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Abstract. The concept of synthetic dimensions has emerged as a powerful framework in photonics and atomic
physics, enabling the exploration of high-dimensional physics beyond conventional spatial constraints.
Originally developed for quantum simulations in high dimensions, synthetic dimensions have since
demonstrated advantages in designing novel Hamiltonians and manipulating quantum or optical states for
exploring topological physics, and for applications in computing and information processing. Here, we
provide a comprehensive overview of progress in synthetic dimensions across photonic, atomic, and other
physical platforms over the past decade. We showcase different approaches used to construct synthetic
dimensions and highlight key physical phenomena enabled by the advantage of such a framework. By
offering a unified perspective on developments in this field, we aim to provide insights into how synthetic
dimensions can bridge fundamental physics and applied technologies, fostering interdisciplinary
engagement in quantum simulation, atomic and photonic engineering, and information processing.
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1 Introduction
Quantum simulation of novel physical phenomena including top-
ology, non-Hermitian physics, many-body interaction, etc.[1–3],
is one of the important research fields in physics nowadays.
There exist numerous platforms in optics and photonics, atoms,
molecules, as well as ions, that show various demonstrations of
quantum simulations that can be further extended towards quan-
tum computations[4–7]. However, many of these platforms support
the physical dynamics in low dimensions, which is constrained
by the arrangement of the hopping between lattice sites and the
limited lattice size of the Hamiltonian model due to the compli-
cation in the spatial geometry. This has triggered the concept of
synthetic dimensions in atomic, molecular, optical, and photonic
communities in the past decade.

The synthetic-dimension concept, using the additional de-
gree of freedom in a system to build an extra dimension, is
of fundamental difference from the concept of dimension in
our common sense. The synthetic dimension specifically refers
to the addition of a virtual axis (onto existing spatial axes) along
which a physical state can propagate or evolve, so as to increase
the effective dimensionality of a Hamiltonian with an extra ef-
fective dimension. In other words, the synthetic dimension plays
a similar role to a spatial dimension on which the physical state
can diffuse. Therefore, as people realize nowadays, there are
two major categories for constructing synthetic dimensions[8–53]

(see Fig. 1).

The first idea to construct the synthetic dimension is to use
the discrete physical modes of light or atoms and design the
connection between these modes. The discrete modes form
the necessary virtual dimension while the wave packet of the
system can transport along these discrete modes through the
connectivity, i.e., the energy exchange between these discrete
modes follows the designed connections, similar to particle
movement or wave propagation in a real spatial dimension.
One can then build a Hamiltonian on the basis of the virtual
dimension constructed by the connection between discrete
physical states, namely, the synthetic dimension. Importantly,
the connectivity in the synthetic dimension can be made to have
tunable and exotic attributes that are hard to realize in a real
spatial dimension. From Sec. 2 to Sec. 5, we will show recent
efforts in constructing synthetic dimensions following this idea,
where various degrees of freedom including frequency, orbital
angular momentum, polarization, time of light, as well as intrin-
sic atomic states and momentum states of atomic lattices are
used with the proper connectivity built for constructing numer-
ous Hamiltonian models. Relevant physical phenomena in
quantum simulations are also discussed, with possible applica-
tions in both photonics and atomic physics.

The second idea to construct the synthetic dimension is to use
a system parameter in a geometric structure. This idea, relating
to well-studied concepts of dimensional reduction, is thus dis-
tinct from the former approach based on introducing new

Fig. 1 Schematic diagram of recent developments in synthetic dimensions. Adapted from Refs.
[16,21,23,25,31,32,37–39,43,53].
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discrete states that are physically connected. Here, each physical
state on a specific value of the parameter refers to the eigenstate
of a Hamiltonian of interest at the amplitude of a variable.
Usually, the variable is chosen as the momentum reciprocal
to a particular spatial dimension in the Hamiltonian, so varying
the system parameter is equivalent to tuning the momentum for
a Hamiltonian. Therefore, the system parameter can form the
parameter synthetic space in this geometric structure without
using a particular spatial dimension to form the desired
Hamiltonian. In Sec. 6, we discuss how it works in detail
and why it can provide an efficient way of simulating high-di-
mensional physics in lower-dimensional geometric structures.
Representative works are also shown to understand the essence
of the parameter’s synthetic dimension.

The field of synthetic dimensions has grown rapidly in recent
years. Given previous reviews and perspectives[8–19] and break-
through works[20–53], the time is ripe for a comprehensive review
that not only summarizes the field of synthetic dimensions but
also provides an introduction to people who are new to this field.
This review serves this purpose by showing the development of
synthetic dimensions and discussing various advantages from
all examples using different synthetic dimensions, including
the potential for exploring high-dimensional physics in
lower-dimensional geometric structures and the designable con-
nectivity leading to Hamiltonians supporting effective gauge
fluxes, non-Hermiticity, long-range couplings, etc. Therefore,
quantum simulations may be performed in high dimensions,
or the simulators can be designed with simple geometric con-
figurations but holding complicated Hamiltonians. On the other
hand, physical dynamics occurring in synthetic dimensions can
be used to manipulate quantum states or optical fields in novel
ways, which provides unique physical or optical performance
important for future applications.

2 Optical Systems: Discrete States
As probably the simplest way to describe many interesting
physical phenomena in condensed matter systems, the tight-
binding model has shown great success in describing the elec-
tronic dynamics within the one-electron approximation in the
solid material[54]. An electron in a solid experiences interactions
with nearby positive charges and other electrons. These inter-
actions can be combined and treated as one average Coulomb
potential for each electron as illustratively expressed in

Fig. 2(a), where the potential has periodic negative dips at
positions of the atomic nuclei labeled by the index m [see
Fig. 2(a)]. Classically, the electron is trapped at each potential
dip (for example, the mth dip), but quantum mechanics show
that the wave packet of the electron can tunnel to nearby poten-
tial dips [�m� 1�th]. Such a process can be described by the
mathematical expression as gma

†

m�1ame
iϕm , where gm is the tun-

neling strength, am (a†m�1) is the annihilation (creation) opera-
tor, and ϕm is the hopping phase. Therefore, the tight-binding
lattice model is built and the corresponding second-quantized
Hamiltonian for the electronic system is[55]

He �
X
m

Vma
†
mam �

X
m

�gma†m�1ame
iϕm � h:c:�; (1)

where Vm is the onsite potential at the mth position. This model
successfully reveals the property of electronic systems in a con-
cise way; the tight-binding model has been widely extended to
the optical system with the aid of coupled-mode theory[56–64].
The key ingredient here is to determine appropriate discrete op-
tical modes and then find a way to connect them in order[8,15]. In
the spatial domain, optical modes hosted in distinct photonic
structures provide discrete modes, such as waveguide modes
in waveguide arrays[65,66] and resonant modes in resonator ar-
rays[65,67]. With these elements, one can consider the connectivity
between them from the spatial overlap between two nearby
modes, which can be described by the coupled-mode theory for
guided-wave optics[60,61,68] and coupled optical resonators[57,59,69],
respectively. The construction of synthetic dimensions using
discrete optical modes with engineered connectivity follows a
similar idea, which utilizes different degrees of freedom of light,
including frequency, orbital angular momentum, waveguide
supermodes, etc., to build the effective tight-binding model
along the synthetic dimension. Nevertheless, different from the
construction of lattices using photonic structures in real-space
dimensions, synthetic dimensions may provide unique aspects
of advantages such as complex and/or long-range hoppings,
extra reconfigurable flexibility, and the potential towards higher
dimensions (>3), as we discuss below.

This section is organized as follows. We show the use of the
frequency degree of freedom to construct the synthetic fre-
quency dimension in Sec. 2.1, where we discuss theoretical ap-
proaches and experimental platforms, along with their
associated physical phenomena and application perspectives.

Fig. 2 Construction of the synthetic frequency dimension. (a) Electrons in the average Coulomb
potential of an ionic crystal. (b) The discrete frequency modes. (c) The one-dimensional frequency
lattice constructed by connecting discrete frequency modes. (d) A ring resonator under dynamic
modulation. (e) The frequency conversion between resonant modes inside the ring induced by
dynamic modulation.
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In Sec. 2.2, we review the process of taking the orbital angular
momentum of light to build the synthetic dimension, with both
theoretical methods and experimental progress provided. We
further talk about the way to use the modal states in waveguides
to design the couplings along the synthetic dimension and show
the resulting experimental results in Sec. 2.3. We discuss other
degrees of freedom of light that may be used to construct the
synthetic dimension in photonics in Sec. 2.4.

2.1 Frequency

In this subsection, we review recent progress in constructing the
so-called synthetic frequency dimension[70,71]. Wewill first outline
the theoretical models and then showcase different experimental
platforms that have been used to construct relevant synthetic lat-
tices. Various physical phenomena and potential applications in
the synthetic frequency dimension are also discussed.

2.1.1 Theoretical model

In building the synthetic frequency dimension, one focuses on
the construction of a tight-binding model for photons along the
frequency axis of light. Here, we introduce the most attractive
synthetic model in recent times, where one or more ring reso-
nators are used to implement the frequency lattice. A ring res-
onator supports a set of discrete resonant modes at different
frequencies, which can mimic the model of electrons on a dis-
crete lattice of sites under the average Coulomb potential [see
Fig. 2(b)]. These frequency modes are isolated and disconnected
from each other if no frequency conversion happens[72]. To in-
duce the hopping effect or the connectivity between frequency
modes, frequency conversion between such resonant frequency
modes is required. The nearest-neighbor hopping or the connec-
tivity between two nearby frequency modes can then form a
one-dimensional (1D) synthetic lattice in the frequency dimen-
sion, which is the essential conceit behind the synthetic fre-
quency dimension [see Fig. 2(c)].

There are several ways to achieve the frequency conversion.
We take the dynamic phase modulation applied in a ring
resonator as an example to demonstrate the underlying mecha-
nism[73]. We consider the model of the modulated ring resonator
as shown in Fig. 2(d), where the ring supports a set of resonant
frequency modes at

ωn � ω0 � nΩR; (2)

where ω0 is the reference frequency, ΩR � 2πvg∕L is the free
spectral range (FSR) of the ring, vg is the group velocity of light
propagating inside the ring resonator, L is the length of the ring,
and n is an integer. The electric field of light that propagates
inside the ring can be expanded in the basis of the resonant
modes[74]:

E�t; r⊥; z� �
X
n

En�t; z�En�r⊥�eiωnt; (3)

where z is the azimuthal position along the propagation direc-
tion, r⊥ is the position perpendicular to the propagation direc-
tion, En�r⊥� is the modal profile, and En�t; z� is the modal
amplitude component at the frequency ωn. The phase modula-
tion dynamically causes a variation in the permittivity of the
material:

δϵ�t� � δ�r� cos�ΩMt� ϕM�; (4)

where δ�r� is the modulation profile generated by the modulator,
ΩM is the modulation frequency, and ϕM is the modulation
phase. The time-periodic variation of the permittivity changes
the phase of the light when the light passes through the modu-
lation part at the location labeled by zM, which can be described
by[65]

E�t�; r⊥; zM� � E�t−; r⊥; zM�eiα cos�ΩMt�ϕM�; (5)

where t� � t� 0� and α is the modulation amplitude. Under
the slowly varying envelope approximation, Eq. (5) can be ex-
pressed using the Jacobi-Anger expansion in terms of modal
amplitude En�t; zM� as

En�t�; zM� � J0�α�En�t−; zM�
�

X
q>0

iqJq�α��En�q�t−; zM�e−iq�Δt−�ϕM�

� En−q�t−; zM�eiq�Δt−�ϕM��; (6)

where Δ � ΩM − ΩR is the frequency detuning, and Jq is the
qth order Bessel function of the first kind. To see how such an
operation leads to an analog of the tight-binding model, we as-
sume that the modulation is weak. In this weak modulation limit
α → 0, Jq is very close to zero for jqj > 1, and J0�α� ≈ 1,
J1�α� ≈ α∕2. The variation of the optical field is then ex-
pressed as

δEn�t; zM� � i
α

2
�En�1�t; zM�e−i�Δt�ϕM�

� En−1�t; zM�ei�Δt�ϕM��: (7)

The accumulation of the optical field variation after propagating
over one loop inside the ring is written by

En�t� TR� − En�t� � δEn�t�; (8)

where TR � 2π∕ΩR is the round-trip propagation time. We de-
fine t � τ� T · TR, where τ is the fast time variable in one
round-trip and T is the discrete round-trip number[75].
Substituting the expression of t into Eq. (8), we obtain

En�τ� �T � 1� · TR� − En�τ� T · TR� � δEn�τ� T · TR�:
(9)

If we further take the approximation that δEn∕TR � ∂En∕∂T as
the time interval, the variation of the optical field can be ex-
pressed in the form of a differential equation:

En�τ� �T � 1� · TR� − En�τ� T · TR�
TR

� ∂En�τ� T · TR�
∂T

:

(10)

Here T can be treated as a continuous variable. Finally, by sub-
stituting Eq. (7) into Eq. (10), one can obtain the relationship
between the variation of the optical field at ωn and two nearby
modes at ωn�1 in the following equation:

TR

∂En

∂T
� i

α

2
�En�1�t; zM�e−i�Δt�ϕ� � En−1�t; zM�ei�Δt�ϕ��:

(11)
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Equation (11) can be regarded as the equation of motion of the
photon wave packet component at each resonant mode, dictated
by the corresponding Hamiltonian

H � g
X
n

�ei�Δt�ϕM�c†n�1cn � e−i�Δt�ϕM�c†ncn�1�; (12)

where g � −α∕2TR is the coupling coefficient. We therefore see
that the modulated ring model in Fig. 2(d) results in a lattice
Hamiltonian along the frequency axis of light [see Fig. 2(e)],
which indeed provides a photonic analogue of the tight-binding
model of the electron. More importantly, such a lattice model lies
on a frequency dimension, which is virtually compared to its
spatial counterparts[76–78].

The 1D Hamiltonian in Eq. (12) contains many parameters or
“knobs” to design the property of the lattice in the synthetic fre-
quency dimension using, for example, the detuning, modulation
phase, and even the modulation profile. First, we introduce the
way for constructing the high dimension in the synthetic fre-
quency dimension by adding multiple modulation frequencies
in the modulation profile. In particular, the dynamic modulation
can not only provide nearest-neighbor coupling between the res-
onant frequency modes in the ring resonator, but also create
long-range coupling by implementing an additional modulation
frequency that is an integer multiple of the FSR of the ring
(NΩR). We assume both modulations are resonant for simplicity
here. The transmission coefficient that incorporates such a two-
modulation-frequency scheme becomes[79]

T � ei�α cos�ΩRt��α0 cos�NΩRt��; (13)

where α0 is the corresponding modulation amplitude of the addi-
tional modulation frequency. The transmission coefficient in
Eq. (13) can lead to the system Hamiltonian[79]

H �
X
n

g�c†n�1cn � c†ncn�1� � g0�c†n�Ncn � c†ncn�N�; (14)

where g0 is the coupling coefficient relevant to α0. One notices
that the Hamiltonian in Eq. (14) describes the physical dynamics
that the field component of light at the frequency ωn can hop to
components at modes with ωn�1 and ωn�N simultaneously.
This hopping picture corresponds to an analog to a lattice in
two dimensions where the photon can move along two direc-
tions. Such fact can be seen if we divide the integer n into two
integers, n � qx � qyN, where qx � mod�n − n0; N� � 1,
qy � �n − n0 − qx � 1�∕N, n0 is a reference index, and the
1D Hamiltonian in Eq. (14) is then written as

H �
X
qx;qy

�gc†qx�1;qy
cqx;qy � g0c†qx;qy�1cqx;qy � h:c:�

�
X
qy

�gc†qx�1;qy�1cqx�N;qy � h:c:�: (15)

Equation (15) describes a two-dimensional (2D) lattice with a
twisted boundary[79]. Higher-dimensional lattices are possible to
be studied in the synthetic frequency dimension by incorporat-
ing more long-range modulation frequencies[79–81], and multi-di-
mensional information can be solely encoded in the frequency
variable[80,82].

Another aspect that one may find from the Hamiltonian in
Eq. (12) is its capability for introducing the gauge degree of
freedom for photons. It is well known that the gauge potential

plays a vital role in controlling the motion of the charged par-
ticles through electric fields and magnetic fields. In fact, the
quantum mechanical way to account for the effect of electro-
magnetic fields on the electron is to couple it to the gauge po-
tential. In contrast to electrons, photons, as neutral particles,
cannot be directly controlled through the electric and magnetic
fields. Nevertheless, time modulation gives a possible solution
for inducing the effective gauge potential that can couple to
photons, inspired by similar ideas introduced in atomic sys-
tems[23,24,83]. We again take a look at the Hamiltonian in Eq. (12)
and note that the hopping phase reads as Φ � Δt� ϕ, which
may be used to construct the effective gauge potential. To
see this fact, we consider a 2D lattice with the Hamiltonian[8]

H � g
X
hm;ni

�e−iΦmn�t�c†mcn � eiΦmn�t�c†ncm�; (16)

where hm; ni labels the nearest-neighbor sites, and Φmn�t� is the
hopping phase between sites m and n. The gauge potential and
the hopping phase have the following relationship[84]:Z

n

m
A · dr � Φnm�t�; (17)

where A is the effective gauge potential. The effective magnetic
field B can be obtained from the effective gauge potential A[85]:

B � 1

S

I
plaquette

A · dr; (18)

where S is the area of the plaquette. For example, the position-
dependent hopping phase Φnm � nϕ along the l̂nm direction
generates the effective magnetic field B � ϕẑ, where ẑ is the
unit vector perpendicular to the plane of the lattice. The effective
electric field E for photons can also be constructed from the
effective gauge potential[86]:

E � − ∂A
∂t

� −l̂nm ∂Φnm�t�
∂t

: (19)

Therefore, by carefully designing the hopping phase Φ
between different frequency modes in the synthetic frequency
dimension, one can manipulate the frequency detuning Δ to
construct the effective electric field along the frequency axis
of light[73,87,88] and design distribution of constant phase parts
to generate an effective magnetic field in space including the
synthetic frequency dimension[70,89].

The discussions on the synthetic frequency dimension are
focused on the Hermitian lattices. It turns out that the synthetic
frequency dimension can be used to design and explore non-
Hermitian physics in a quite straightforward way. The idea
for exploring non-Hermitian physics in the synthetic frequency
dimension has started by introducing the amplitude modulation
in ring resonators in a theoretical proposal to produce skew-
Hermitian or anti-Hermitian couplings[90], and later has been
implemented in experiments including both phase and ampli-
tude modulations[40]. To briefly introduce the process of con-
structing a general non-Hermitian model using both the
phase modulator and amplitude modulator, we consider the cor-
responding transmission[40]:

T � eiα cos�ΩMt�−β sin�ΩMt�; (20)
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where α is the modulation amplitude from the phase modula-
tion, while β is the modulation amplitude from the amplitude
modulation. Such a transmission coefficient can be used to de-
rive a Hamiltonian in the weak modulation limit as

H �
X
n

κ�c
†

n�1cn � κ−c†ncn�1; (21)

with κ� � −α∕2TR 	 β∕2TR. One can see that the Hamiltonian
in Eq. (21) is non-Hermitian for β ≠ 0. Therefore, based on the
choice of both the phase modulation and the amplitude modu-
lation parts to design specific non-Hermitian Hamiltonians,
Wang et al. generated arbitrary one-band topological wind-
ings[40] and topological two-band complex-energy braiding[41].
These experimental demonstrations highlight the versatility of
the ring resonator system in building synthetic frequency dimen-
sion models that support arbitrarily complex band structures.

The approach to analyzing the synthetic frequency lattice
based on the tight-binding Hamiltonian provides a simple ap-
proach to solving many problems. However, such a model is
limited to the weak coupling regime. It also cannot account
for the variation in the propagation of light at different points
within the circumference of the ring. To provide a better theo-
retical method, let us get back to Maxwell’s equations:

∇ × E � − ∂
∂t
μH; (22)

∇ ×H � ∂
∂t
εE; (23)

∇ · E � 0; (24)

∇ ·H � 0; (25)

where E, H, ε, and μ are the electric field, magnetic field inten-
sity, permittivity, and permeability of the medium, respectively.
Putting operator ∇× on the two sides of Eq. (22), one can obtain

∇ × �∇ × E� � − ∂
∂t
�μ∇ ×H�: (26)

Substituting Eq. (23) into Eq. (26), one gets

∇ × �∇ × E� � − ∂2

∂t2
�μεE�: (27)

The left side of Eq. (27) is

∇ × �∇ × E� � ∇�∇ · E� − ∇2E � −∇2E: (28)

Substituting Eq. (28) into Eq. (27), one can obtain Maxwell’s
wave equation for the electric field:

∇2E − με
∂2

∂t2
E � 0: (29)

In photonic structures such as waveguides, the optical field E
characterized in one dimension under the slowly varying
envelope approximation can be expanded as

E � E�t; z�e−iωt�ikz; (30)

where z is the propagation direction, ω is the frequency of the
light, and k is the wave vector. Substituting Eq. (30) into
Eq. (29), one gets the wave equation for the slowly varying
envelope of the modal amplitude:

∂
∂z

E�t; z� � 1

vg

∂
∂t
E�t; z� � 0; (31)

where vg � 1∕ �����
με

p
is the group velocity of light in the medium.

The wave equation in Eq. (31) can hold the universal solution
E�t − z∕vg; z�, meaning that the field does not change its am-
plitude while it propagates inside the waveguide. One can then
derive the transfer-matrix method, which has been successfully
applied to calculate the band structure of systems such as the
three-dimensional (3D) screw dislocation[91] and photonic
Weyl points in synthetic frequency dimensions[92]. In Ref. [92],
the band structures calculated from the tight-binding model and
the transfer-matrix method have been compared. Results show
that the overall shapes of the band structures from the two mod-
els are quite similar, but there are subtle differences indicating
that the transfer-matrix method may present more detail of the
system than the tight-binding model. In the following, we intro-
duce the transfer-matrix method.

The light propagation inside a ring resonator follows the
same way in the waveguide, except for the periodic condition
imposed by the length of the ring E�t; z� L� � E�t; z�. The ring
resonator supports a set of resonant frequency modes ωn due to
the boundary condition. The modal amplitude with frequency
ωn at position j and at time ti is Ej;n�ti�. The transfer process
in the ring is

Ej�1;n�ti�1� � eiδωδteiknδzEj;n�ti�; (32)

where δz � vgδt, δt � 2π∕�JΩR�, J is the total discrete position
number in the ring (the total propagation steps), δω is the fre-
quency detuning, and kδz satisfies the resonant condition
eiknL � ei2πn. Next, we consider the dynamic electro-optic
modulation (EOM) process inside the ring, which provides the
connectivity between nearest-neighbor frequency modes. We
assume that the EOM is placed at the position with j � 1
and gets modulated by the external signal α cos�ΩMt�, where
ΩM is the modulation frequency and is set to be equal to the
FSR of the ring (ΩM � ΩR). The modulation process leads to

Ej�1;n�t�� � eiα cos�ΩRt�Ej�1;n�t−�; (33)

where the exponent part in Eq. (33) can be expressed using the
Jacobi-Anger expansion[92]

eiα cos�ΩRt� �
X�∞

q�−∞
iqJq�α�eiqΩRt: (34)

Substituting Eq. (34) into Eq. (33), one can obtain the trans-
fer relation between different frequency modes:

Ej�1;n�t�� �
X�∞

q�−∞
Ej�1;n�q�t−�iqJq�α�: (35)
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All optical components include every resonant frequency mode
at each position j:

Ψ�ti� �
�
E1;1�ti�; E2;1�ti�;…EJ;1�ti�|���������������������{z���������������������}

n�1

; E1;2�ti�;…EJ;2�ti�|������������{z������������}
n�2

;…
�
T
:

(36)

The transfer process in Eq. (32) and the modulation process in
Eq. (35) can then be generalized into an evolution function:

Ψ�ti�1� � eiδωδtHΨ�ti�; (37)

where H is the matrix form of the transfer relationship between
optical components. In order to obtain the band structure be-
tween δω and reciprocal lattice vector (kf), one needs to apply
the steady-state condition, assume the optical field does not vary
with time, i.e., Ψ�ti� � Ψ�ti�1�, and then perform Fourier
transformation Ej;kf �

P
nEj;ne−ikfnΩR . The eigenfunction

equation is

e−iδωδtΨkf � HkfΨkf : (38)

As a simple example, we consider a single-ring case with
J � 2. The corresponding Hamiltonian is

Hkf �
�

0; eiπ

eiπeiα cos�kfΩR�; 0

�
: (39)

The wave function is written as Ψkf � �E1;kf ; E2;kf �. The two
eigenvalues for Eq. (39) read as

�
Eig1 � eiπei

α
2
cos kfΩR;

Eig2 � ei
α
2
cos kfΩR :

(40)

Taking the natural logarithm of eigenvalues in Eq. (40) and us-
ing δω1�2�δt � i ln�Eig1�2��, one can then obtain δω:

� δω1

ΩR
� −�1� α

2π cos�kfΩR��;
δω2

ΩR
� − α

2π cos�kfΩR�:
(41)

One can use band structures in Eq. (41) within
δω ∈ �−ΩR∕2;ΩR∕2� to analyze the property of the system.

For the ring coupled with an external waveguide, we can
write the input-output formalism[79]:

Ej0;n�t�� �
�������������
1 − γ2

q
Ej0;n�t−� − iγEin

n �t−�; (42)

Eout
n �t�� �

�������������
1 − γ2

q
Ein
n �t−� − iγEj0;n�t−�; (43)

where Ein
n (Eout

n ) is the amplitude of the input (output) light with
frequency ωn in the external waveguide, γ is the coupling
strength, and we assume here the external waveguide is coupled
at the position j0. Equations (42) and (43) can also be rewritten
as a scattering matrix:

S �
� �������������

1 − γ2
p

; −iγ
−iγ; �������������

1 − γ2
p �

: (44)

The scattering matrix in Eq. (44) not only can describe the cou-
pling between the ring and the external waveguide, but also can
describe the coupling between two rings. By adding the scatter-
ing matrix properly into Eq. (37), one may compute the resulting
band structure of a specific model in the synthetic frequency
dimension[93].

Last but not least, the wave equation for the optical field in
Eq. (31) can also be used to perform the direct simulation, to-
gether with the modulation process in Eq. (35) and the input-
output process or the coupling between rings in Eq. (44).
Such simulation procedure can be used to study the exact output
spectrum of the field from rings and also show the dynamics of a
model in the synthetic frequency dimension[91–93].

2.1.2 Experimental platform

After many theoretical proposals developed to realize various
simulations and functionalities with the synthetic frequency di-
mension, experimental efforts have been made in a number of
photonic platforms. One such critical platform is a fiber-
based ring resonator system incorporating electro-optic modu-
lators[38,40,41,80,82,88,94–100]. The length of the fiber ring typically is
∼10 m in experiments [see Fig. 3(a)], which corresponds to
an FSR of the order ∼20MHz. For the input and output proc-
esses, an external waveguide accompanied by a directional cou-
pler is required to couple light into or out of the main cavity. The
frequency of the input laser can be flexibly adjusted to selec-
tively excite the desired eigenenergy[38]. In addition, the off-res-
onant excitation can also be used to achieve a direct band
structure measurement by analyzing the output optical field in-
formation[38,40,41,82,94,96,97,99,100]. The ring resonator system enables
the flexible ability to explore photonic analogs of condensed
matter physics effects. For example, the naturally existing clock-
wise and counter-clockwise modes in the ring can be used to
mimic a pseudo-spin degree of freedom[38]. The modulation
phase controls the photon’s gauge degree of freedom and can
be directly engineered to mimic the magnetic field acting on
electrons[97,100]. The modulation frequency can be tailored to
mimic an electric field by controlling the frequency detuning
between the modulation frequency and the FSR of the ring
(Δ � ΩM − ΩR)

[95]. Additionally, adding an amplitude modula-
tor makes it possible to realize non-Hermitian coupling[40,41,82].
Apart from this, many schemes have been proposed to design
boundaries for frequency lattices, which further builds upon the
spatial lattice analogy[97,101].

The properties of the synthetic frequency lattice can be ob-
tained from the optical field information inside the ring. There is
a convenient way to directly measure the optical field informa-
tion in the ring, by coupling an external waveguide to the main
ring, where the field can leak out of the ring. This enables the
dynamic evolution of the field inside the ring to be visualized.
Furthermore, it has been observed that the reciprocal lattice vec-
tor (kf) of the frequency lattice is the time (τ) within each round
trip. By reconstructing the experimental time-resolved transmis-
sion with a simultaneous sweep of off-resonant excitation detun-
ing (δω � ωin − ωn), the band structure of the corresponding
frequency lattice in a single ring can be obtained. The transmis-
sion of the output has a relationship between δω and τ as
follows:
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Tout�τ � kf; δω� �
γ2loss

�δω − g cos�ΩRkf − Δτ − ϕM��2 � γ2loss
;

(45)

where γloss is the loss in the ring and ϕM is the modulation phase.
For a simple demonstration, we set Δ � 0 and ϕM � 0. The
transmission in Eq. (45) can reach its maximum at δω �
g cos�ΩRkf�, and thus presents a cosine-like pattern, which is
the band structure for a 1D synthetic frequency lattice[94,97].
With this useful approach, one may observe band structures for
different models constructed in synthetic frequency dimensions.

Besides the flexible-fiber-based ring resonator system that
constructs the synthetic frequency dimension, research is also
being conducted with integrated on-chip nanophotonic resona-
tors, which are scaled-down versions of fiber-based rings to-
gether with state-of-the-art integrated lithium niobate electro-
optic modulators [see Fig. 3(b)][102]. This system may not only
provide a way to build synthetic frequency lattices but also
shows potential for multifunctional on-chip devices[103–107]. In
one outstanding example, Hu et al. experimentally realized a
synthetic frequency dimension with an on-chip electro-optic
frequency comb, demonstrating a scheme to construct higher-
dimensional synthetic lattices in a single ring resonator[108].
The length of the on-chip ring is of the order of ∼10 mm, which
corresponds to an FSR of the order of ∼10GHz. Consequently,
the modulation frequency is also of the order of ∼10GHz.
Balčytis et al. realized the synthetic frequency lattice on a sil-
icon CMOS (complementary metal-oxide semiconductor) plat-
form, which enables research in synthetic frequency dimensions
on mature technology[109]. Moreover, Zhao et al. achieved a sin-
gle layer of a matrix-vector multiplier in synthetic frequency
dimensions through integrated cavity acousto-optics, which

holds promise for scalable analog optical computing[110].
Miniaturization of the on-chip ring provides a condition to
manipulate photons in the quantum regime. Javid et al. com-
bined electro-optic modulation and spontaneous parametric
down-conversion to study on-chip entangled quantum states
in synthetic frequency dimensions[111], highlighting the ability
to perform large-scale analog quantum simulations and compu-
tations within the time-frequency domain. Microwave photons
(∼2π × 155MHz) in synthetic frequency dimensions have also
been demonstrated in a superconducting resonator[112] and a
chain of modulated cavities[113], showcasing the applicability
of the concept to different frequency regimes. More recent work
in parametrically driven superconducting resonators has realized
few-mode lattices of the Creutz ladder and the bosonic Kitaev-
Majorana chain in microwave frequency dimensions[114,115].

The above-introduced schemes to construct the synthetic fre-
quency lattice typically require the waveguide to form a loop/
ring, where the resonant frequency modes naturally serve as the
lattice sites. However, one can build a synthetic frequency lattice
without using a ring, by taking an open waveguide and applying
traveling wave modulation[81,116–128]. In such platforms as shown
in Fig. 3(c), the traveling-wave modulation induces a variation
of the material’s refractive index as

nt � α cos�ΩMt − qMz� ϕM�; (46)

where ΩM, qM, ϕM, and α are the modulation frequency, modu-
lation wave vector, modulation phase, and modulation ampli-
tude, respectively. The frequency of the input laser is ω0,
which corresponds to the site (ω0; q0) along the dispersion curve
of the waveguide. Once the optical field inside the waveguide is
under traveling-wave modulation, its frequency and wave vector
experience a discrete variation (ω0 � nΩM; q0 � nqM) with n

Fig. 3 Experimental platforms to realize synthetic frequency dimensions. (a) The electro-optically
modulated fiber ring. Adapted from Ref. [88]. (b) The electro-optically modulated on-chip wave-
guide. Adapted from Ref. [102]. (c) The traveling wave modulated waveguide. Adapted from
Ref. [118]. (d) Four-wave mixing in a nonlinear medium. Adapted from Ref. [133].
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being an integer. This forms a discrete lattice along the fre-
quency dimension [see Fig. 3(c)]. With the phase-matching con-
dition being satisfied, the amplitude of the n-th mode an�z� can
be obtained by solving the coupled-mode equations

i
∂an�z�
∂z

� C�eiϕMan−1�z� � e−iϕMan�1�z��; (47)

where C � Δnk0∕2 is the coupling coefficient and k0 is the vac-
uum wave vector. The Bloch mode in the frequency lattice has
the form an � a0 exp�ikω · nΩM� exp�ikzz�, where kz is the
propagation constant along the z direction and kω is the
Bloch wave vector. The dispersion relation for the frequency
lattice is then kz � −2C cos�kωΩM − ϕM�. One can incorpo-
rate a wave vector mismatch δq of the traveling-wave modula-
tion to induce an effective force F � −δq along the frequency
dimension. Although such platforms do not necessitate align-
ment of resonances in the ring, careful design of the traveling-
wave modulation is required. Moreover, it is also challenging to
extend the spatial dimension by coupling multiple waveguides
or realize specific band excitations through the choice of the
input frequency of light. Nevertheless, this platform can also
be potentially scaled down with integrated photonics to form
functional and tunable on-chip devices.

The traveling-wave modulation process performed in the
waveguide above is tunable, but this is also possible in a wave-
guide with χ�3� nonlinearity. Cross-phase modulation of a probe
signal and a sinusoidally shaped pump in a highly nonlinear fi-
ber was used in experiments to observe spectral Bloch oscilla-
tions[129–131], and the quantum Hall effects have been studied in
one-dimensional four-waveguide arrays including the synthetic
frequency dimension[132]. On the other hand, the nonlinear four-
wave mixing process has been explored to construct the fre-
quency-domain photonic lattices[133–136]. A pair of pumps with
their frequencies separated by the spectral distance ΩR can lead
to a hopping of the signal field from its original frequency to
frequencies separated by ΩR through four-wave mixing [see
Fig. 3(d)]. Multiple pairs of pumps with frequency differences
of multiples of ΩR, i.e., nΩR, can then be applied to introduce
long-range coupling between frequency components spanning
the interval nΩR. The Hamiltonian for the signal carrying differ-
ent frequency modes that propagate along the nonlinear wave-
guide under the phase-matching condition is

H �
X
m

X
n

Cna
†
mam�n � h:c:; (48)

where m is the index labeling the frequency component and Cn
is the corresponding coupling coefficient, determined by four-
wave mixing:

Cn � 2χP
X
m

AmA

m−n; (49)

where P is the average pump power, χ is the effective nonlin-
earity, and Am is the complex amplitude of one of the pump
fields. The experimental realization of the spectral photonic lat-
tice used a co-propagating signal and multiple pumps in a non-
linear medium for the tunable, long-range, and complex
coupling coefficients in the synthetic frequency lattice[133].
Wang et al. further utilized the nonlinear four-wave-mixing plat-
form to study topological effects in multidimensional synthetic

chiral-tube lattices[135], illustrating the capability to study topo-
logical phenomena using nonlinear optical effects.

Besides the four introduced typical platforms to build the
synthetic frequency dimensions in photonics, there are also
other potential platforms that may be used. For instance, an op-
tical microdisk-resonator supports resonant modes spaced with
an interval Ωdisk � c∕�ndiskR�, where c is the light speed in the
vacuum, ndisk is the effective refractive index of the microdisk,
and R is the radius of the microdisk. A continuous-wave pump
laser can excite the microdisk utilizing Kerr nonlinearity to in-
troduce the coupling between different resonant modes. By
doing so, one can construct a synthetic frequency lattice therein
and similarly use the phase of the pump laser to engineer an
effective gauge potential[137]. A Raman medium undergoing
molecular modulation also shows the potential to construct syn-
thetic frequency dimensions[138]. This leads to a naturally asym-
metric synthetic lattice model but also discusses a different
direction of research at the interface of topological photonics
and nonlinear optics[139].

2.1.3 Physical phenomena

Here, we give some outstanding examples of exploring various
physical phenomena from different designs of photonic lattices
with synthetic frequency dimensions. The most striking feature
of studying physics using the synthetic frequency dimension is
that the corresponding band structure of the synthetic lattice
model can be directly visualized by measuring the transmission
[see Eq. (45)] through the ring resonator in experiments. Dutt
et al. performed the first experiment in a fiber-based ring res-
onator to measure the band structure of a 1D lattice[94]. The
modulation frequency is set to the FSR of the ring and the mea-
sured band structure presents a cosine-like pattern, a typical
band shape associated with a 1D tight-binding lattice [see
Fig. 4(a)]. They further included the long-range coupling by
adding a signal with the modulation frequency 2ΩR. They in-
troduced an effective gauge flux by tuning modulation phases,
creating a nonreciprocal band structure with broken time-rever-
sal symmetry. Later on, Li et al.measured the so-called dynamic
band structure using non-zero frequency detuning Δ ≠ 0 in the
modulation signal, tracking the dynamic motion of the band
structure with the form[88]

δω�t� � g cos�ΩRkf − Δt�: (50)

The frequency detuning Δ here plays the role of an effective
electric force along the synthetic frequency dimension, as sum-
marized in Fig. 4(b). In contrast to the static band structure
which is time-independent, the dynamic band structure varies
with time. Therefore, in experiments, one can slowly scan
the injected frequency of the input field to exactly capture
the moving band structure at each time slice. Doing so provides
a novel way to capture more delicate information of a dynamic
system and shows the potential to design on-chip functionality
with time-dependent Hamiltonians[140].

Besides the above simple models, synthetic frequency di-
mensions also give an approach to explore nontrivial physics
in photonics. For instance, it has been well known that the reali-
zation of the quantum Hall effect in condensed-matter physics
requires a strong magnetic field and a low temperature[141].
However, in photonics, these two conditions may be relaxed.
Fang et al. theoretically pointed out that the effective magnetic
field for photons can be created by designing non-reciprocal
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hopping phases[85,142]. The theoretical proposal was then realized
in synthetic frequency dimensions with a similar idea for con-
structing the effective magnetic flux. In the experiment, Dutt
et al. utilized the clockwise- and counterclockwise-propagating
modes in a single-ring resonator[38] to mimic the pseudo-spin
degree of freedom and used auxiliary waveguides to couple
these two modes. Utilizing the individual frequency axes of each
pseudo spin and electro-optic modulation inside the ring, they
built a two-legged ladder lattice model with an effective mag-
netic flux therein. Quantum Hall associated physical phenom-
ena including spin-momentum locking and topological chiral
one-way edge currents were observed in this single-photonic-
cavity experiment [see Fig. 4(c)]. Ye et al. then used two
coupled rings to build such two-legged ladder models but
introduced gain/loss, where they observed the breakdown of
chirality[100]. The design of synthetic frequency dimensions us-
ing two rings can provide more flexibility in construction of lat-
tice models. For instance, strongly coupled rings can induce
resonance splitting resulting in a photonic molecule[143–145].
Based on the symmetry along the frequency axis of light, Li
et al. constructed a Su-Schrieffer-Heeger (SSH) model[99].
Different from the SSH counterparts in real space[77,146–148], the
synthetic frequency SSH lattice supports band structures includ-
ing wave-function interference of the eigenstate information,
which exhibit different patterns for the trivial and nontrivial
cases, as shown in Fig. 4(d). One can then use this unique

feature to achieve direct extraction of the topological Zak phase
in experiments. Another way to obtain the topological invariant
is using the mean-chiral displacement in the driven-dissipative
lattice[149]. As a direct step forward from this experiment, Qiao
et al. explored phenomena associated with the ultrastrong cou-
pling regime in this synthetic SSH configuration, where the
edge states of the 1D Floquet SSH lattice were observed at 0
and π energy bandgaps[150]. Research on the photonic molecule
platform can also be extended to study the wave-function
tomography of the generalized SSH model including long-range
couplings and the Haldane model[151,152]. On the other hand, in a
proposed system including an auxiliary ring, Yu et al. showed
the direct extraction of the topological invariant in a nontrivial
Hamiltonian in quench dynamics, from the collected output op-
tical field solely in the time dimension[75]. Two rings of different
lengths have also been used to construct the stub lattice (1D Lieb
lattice), where a gapped flat band, mode localization effect, and
flat-to-non-flat-band transition were observed in experiments[96].

Although non-Hermiticity can be introduced into a photonic
model by tuning the gain and loss distribution[153–156], it has been
observed that non-Hermiticity in the synthetic frequency dimen-
sion can also be realized through incorporating both amplitude
modulation and phase modulation in the ring resonator. Wang
et al. constructed a synthetic frequency lattice in one ring res-
onator imposing both amplitude modulation and phase modu-
lation on the ring to form a 1D Hamiltonian[40]:

Fig. 4 (a) The static band structure of a 1D frequency lattice. Adapted from Ref. [94]. (b) The
dynamic band structure of a 1D frequency lattice. Adapted from Ref. [88]. (c) The chiral band
structure of the quantum Hall ladder. Adapted from Ref. [38]. (d) The SSH model in the synthetic
frequency dimension. Adapted fromRef. [99]. (e) The topological winding of a non-Hermitian band.
Adapted from Ref. [40]. (f) The topological complex-energy braiding of non-Hermitian bands.
Adapted from Ref. [41]. (g) The dissipative solitons in a synthetic dimension. Adapted from
Ref. [161]. (h) The quantum correlation in synthetic space. Adapted from Ref. [111].
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H �
X
m;n

�κ�ma
†
n�man � κ−ma†nan�m�; (51)

where the coupling coefficient κ�m � Cm exp��iαm��
Δm exp��iβm�, Cm (Δm) is the phase (amplitude) modulation
strength, αm (βm) is the modulation phase induced by the phase
(amplitude) modulation process, and m is the coupling order.
Non-zero amplitude modulation with Δm ≠ 0 induces non-
Hermiticity in the Hamiltonian H ≠ H†. The expression of
the detected signal I�kf; δω� is

I�kf; δω� ∝
1

�Re�E�kf�� − δω�2 � �Im�E�kf���2
; (52)

where Re�E�kf�� (Im�E�kf��) is the real (imaginary) part of the
eigenenergy of the Hamiltonian in Eq. (51). For a given kf, the
detected signal I has a Lorentzian function shape along the de-
tuning axis δω. Therefore, through fitting one can obtain
Re�E�kf�� and Im�E�kf�� in experiments [see Fig. 4(e)]. By
plotting the extracted kf-dependent Re�E�kf�� and Im�E�kf��
on the complex plane, one can visualize winding features if
the corresponding Hamiltonian is nontrivial. Wang et al. further
used two ring resonators to study the topological complex-
energy braiding. The Hamiltonian of their system is[41]

H �
X
n

ga†nbn � gb†nan − iγa†nan � κa†n�1an � κa†nan�1

� �C − Δ�a†n�man � �C� Δ�a†nan�m; (53)

where a†n (an) and b†n (bn) are the creation (annihilation) oper-
ators in ring A and ring B, γ is the loss in ring A, and κ, g, and
C� Δ are the coupling coefficients. The real and imaginary
parts of eigenenergies of the Hamiltonian in Eq. (53) on the
complex 3D space [Re�E�; Im�E�; kf] represent the unlink, un-
knot, Hopf link, and trefoil diagrams when specific parameters
are chosen, as shown in Fig. 4(f).

The synthetic frequency lattice may further be enriched by
including nonlinearity in the lattice model[157–159]. Tusnin et al.
theoretically explored the nonlinear effects induced by χ�2� and
χ�3� susceptibilities in the ring resonator[160], and later Englebert
et al. experimentally investigated dissipative solitons in
synthetic frequency dimensions, where long-living Bloch oscil-
lations are guaranteed by the Kerr-type nonlinearity and dissi-
pative structures (solitons), as shown in Fig. 4(g)[161]. Javid et al.
utilized electro-optic modulation and spontaneous parametric
down-conversion to construct a 2D synthetic frequency lattice,
where nonlinearity in the form of parametric down-conversion
plays the role of expansion of the frequency dimension[111]. In
this example, the quantum correlation in the synthetic space has
been shown experimentally [see Fig. 4(h)].

All previous examples focus on the model in one dimension,
i.e., a singular frequency dimension. It is useful to extend the
model to a higher-dimensional space. To achieve higher dimen-
sions, one can build a synthetic space by combining the syn-
thetic frequency dimension and a geometric dimension[162].
For example, Yu et al. theoretically studied the Lieb lattice in-
cluding the frequency axis of light using a 1D array consisting
of two types of rings and explored the isolated photonic flat
band[163]. The four-dimensional Hall effect has been theoretically
proposed in a 3D geometric structure by adding frequency as the
additional fourth dimension[71]. Moreover, Lin et al. constructed

a 3D screw dislocation model with 2D ring arrays[91]. On the
other hand, one can also combine synthetic frequency dimen-
sions with other synthetic dimensions (which we shall introduce
in later sections) to create a higher-dimensional synthetic space.
For example, Yuan et al. theoretically investigated the photonic
gauge potential in synthetic frequency and orbital angular mo-
mentum dimensions[164]. Furthermore, synthetic frequency di-
mensions can also be combined with the time dimension in a
nonintuitive way to build 2D models[124,165]. Last but not the
least, it has also been theoretically proposed[79] and experimen-
tally demonstrated[80,82] that one can fold the frequency axis of
light by introducing long-range coupling between resonant
modes at multiples of the FSR to construct 2D or 3D models.
In particular, traveling-wave modulation in waveguides using
incommensurable frequencies was proposed to construct
higher-dimensional lattices[81].

2.1.4 Application perspective

The concept of synthetic frequency dimensions not only can be
used to build different lattice models for simulating various
physical phenomena but also the resulting dynamics from the
evolution of the Hamiltonian or the steady-state output optical
field distribution may find many applications. Here, we briefly
list several aspects of the synthetic frequency dimension appli-
cations.

One of the earliest goals for developing synthetic frequency
dimensions was for quantum simulations, especially for nontri-
vial physics, as well as for exploring many-body physics[70,166].
To serve such a purpose, the local interaction between photonic
modes is required. In this sense, large nonlinearity is usually
desired for achieving the photon-photon interaction in synthetic
frequency lattices. Previous experiments have demonstrated dis-
sipative solitons in a synthetic frequency lattice built in a Kerr-
type nonlinear material, showing the existence of classical light-
light interactions[161]. Moreover, nonlinearity in the form of
spontaneous parametric down-conversion in on-chip platforms
shows the potential to execute photon-photon interactions from
the generated quantum entangled photon pairs[111]. By introduc-
ing nonlinearity into the synthetic frequency lattice, it has also
been theoretically pointed out that many-body physics may be
explored, which could lead to frequency entanglement for pho-
tons[166,167]. Moreover, it has also been observed that if an atom,
or quantum emitter, is added into a ring resonator that supports
synthetic frequency dimensions, an artificial giant atom is in-
duced that can interact with the photon via multiple quantum
channels, due to the fact that all modes in the synthetic fre-
quency lattice can interact with the atom even with frequency
detunings[168–170]. The research that follows this line can lead to
quantum optics in the synthetic frequency dimension, which
could later contribute to quantum simulations of many-body
physics with photonic technologies.

Another direct output from experiments with synthetic fre-
quency dimensions is frequency comb generation, previously
overlooked in this context. Developments in integrated photon-
ics such as high-efficiency and broadband on-chip electro-optic
frequency comb generators in a coupled-resonator platform[171]

and integrated actively mode-locked lasers on thin-film lithium
niobate[172] have provided related experimental platforms. From
the perspective of fundamental physics, Li et al. used two rings
with different lengths to build a synthetic moiré frequency
superlattice and demonstrated frequency comb generation with
mode spacing reduction[173]. In addition, non-Hermitian physical
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dynamics in the synthetic frequency lattice may also be used to
control comb generation[174]. From the perspective of a new plat-
form, Heckelmann et al. have recently taken the synthetic fre-
quency space to demonstrate quantum walk comb generation in
a fast gain laser, which produces a low-noise, nearly flat broad-
band comb[49]. Such a system brings the new active lattice model
into the synthetic frequency dimension, which may not only be
used to develop the quantum walk comb laser[175], but also bring
novel comb generations such as developing the low-threshold
comb source at telecommunication wavelengths[176] and provid-
ing the comb spectral shaping through phase engineering in the
synthetic lattice[177]. Moreover, this active system also provides a
way for measuring the dynamics of the wave evolution in the
synthetic lattice, important for performing quantum simulations
with synthetic dimensions, where as an example, Dikopoltsev
et al. experimentally demonstrated the quench dynamics of
Wannier-Stark states in the active synthetic frequency space[178],
highlighting the ability to generate coherent multi-frequency
comb sources. On the other hand, Flower et al. demonstrated
topological frequency combs in a 2D resonator lattice that hosts
edge states, by manipulating spectral domain information using
nonlinearity[179]. From the perspective of quantum applications,
Pontula et al. theoretically studied the mechanism to shape
above-threshold frequency combs that exhibit tunable bright
squeezing and quantum correlations in a multimode nonlinear
cavity through dissipation and Bloch mode engineering[180].
Different from conventional comb generation experiments,
these works specifically use physical phenomena in the syn-
thetic lattice to design a platform to generate tunable frequency
combs with desired spectra.

Synthetic frequency dimensions may also find use in the field
of quantum information and optical computing, where the en-
coding, manipulation, and decoding of information along the
synthetic axis of light become important ingredients. Lu et al.
reviewed emerging developments towards frequency-bin
quantum information processing and networking, showing its
unique advantages for multiplexing, interconnects, and high-
dimensional communications[181]. Other than that, implementa-
tion of optical computing in synthetic frequency dimensions
offers an integrated photonic architecture to achieve essential
applications spanning quantum information processing,
classical signal processing, and neural networks[182,183]. For ex-
ample, Buddhiraju et al. proposed a scheme to realize arbitrary
linear transformations for photons in the frequency synthetic
dimension, which uses ring resonators to implement tunable
couplings between multiple frequency modes in a single
waveguide[184]. Fan et al. theoretically and experimentally dem-
onstrated convolution processing in photonic synthetic fre-
quency dimensions with one ring resonator incorporating a
phase and an amplitude modulator, which lays the foundation
to perform artificial-intelligence applications on compact
devices[98,185].

In addition to this, many physical phenomena including uni-
directional frequency conversion[70], non-Hermitian effects[40],
and higher-dimensional topology[91] have been well studied
theoretically and experimentally in synthetic frequency dimen-
sions, which may trigger future applications on the integrated
platforms with different functionalities. For example, Yu et al.
theoretically showed the integration of multiple functions in
the synthetic frequency dimension on an array of ring resona-
tors[89]. With respect to non-Hermiticity, the anti-PT symmetry
and the PT symmetry in synthetic frequency dimensions

can lead to pulse-shortening in mode-locked lasers[90,186,187].
Moreover, the theoretical design of the 2D non-Hermitian skin
effect in a synthetic photonic lattice would enable program-
mable light propagation and frequency conversion in an array
of ring resonators[188].

Current prosperous research in synthetic frequency dimen-
sions shows it is a powerful tool for not only quantum simula-
tions but also photonic emulator designs based on the photon’s
frequency degree of freedom. More possibilities can be further
explored in this space, including non-Abelian physics[189–192],
mirror-induced reflection[193], time reflection and refraction[194],
topological spin pumps[195], synthetic Floquet lattices[196–198], and
mode-locked topological insulator lasers[199]. In particular, re-
cent work theoretically predicted that homogeneous non-
Abelian lattice gauge potentials may induce Dirac cones[189],
which was also confirmed by the experiment[190]. Therefore, syn-
thetic frequency dimensions show tremendous potential for fun-
damental exploration as well as on-chip applications.

2.2 Orbital Angular Momentum

As another very important degree of freedom for photons, the
orbital angular momentum (OAM), carrying the spatial informa-
tion of light, attracts fundamental research interest in the struc-
tured light manipulation[200–204] and has broad applications from
quantum information[205,206] to optical and photonic communica-
tions[205,207]. It has been observed that OAM can also be used to
construct a synthetic dimension in photonics. In this section, we
will introduce the theoretical description of a synthetic OAM
lattice model, and recent experimental progress.

2.2.1 Theoretical model

Theoretical works[208,209] indicate that a main cavity coupled with
an auxiliary cavity can be used to construct the synthetic OAM
dimension [see Fig. 5(a)], where light with the OAM informa-
tion passes through spatial light modulators multiple times to
form a lattice structure. Coupling between sites is achieved by
converting a portion of the energy from its original OAM mode
into a mode with a lower (higher) OAM number l [see Fig. 5(b)].
The corresponding tight-binding model reads as[53,208,209]

H � κ
X
l

�eiφc†l cl−1 � e−iφc†l cl�1�; (54)

where κ is the coupling coefficient between two nearby OAM
modes, φ is the hopping phase that is determined by the propa-
gation length inside the auxiliary cavity, and c†l (cl) is the cre-
ation (annihilation) operator for the lth OAM mode. Although
the model in Eq. (54) only includes nearest-neighbor coupling,
long-range couplings may also be achieved by engineering
multiple auxiliary cavities accommodating suitable spatial light
modulators[210].

The tight-binding model can provide a clear way to reveal the
intrinsic physics in the synthetic lattice with different OAM
modes. It is also important to show the ability to measure the
corresponding band structure and evolution dynamics of the
system. One can use the input and output formalism of light
with OAM following the same procedure as that for the syn-
thetic frequency dimension in Eq. (44) to model the coupling
between different cavities and construct high-dimensional syn-
thetic OAM lattices. Different from the synthetic Bloch momen-
tum of the frequency dimension, which is the time taken by light
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to circulate inside the ring for one round trip, here the Bloch
momentum for the synthetic OAM lattice is the azimuthal angle
ϕ (considering the fact that the wave function for light-carrying
OAM has the expression eilϕ)[14]. Through measuring the trans-
mitted intensity along the azimuthal angle ϕ, it has been pro-
posed that one can reconstruct the band structure of the
synthetic OAM lattice[14,208].

Based on the framework introduced above, a lot of physical
models based on the cavity structure have been established.
Zhou et al. used a single degenerate optical cavity and proposed
to demonstrate 1D topological physics in the synthetic OAM
lattice [see Fig. 5(c)], where they designed a pinhole structure
in the cavity to form a sharp boundary along the OAM dimen-
sion so that the edge state associated with the SSH model can
emerge[53]. Luo et al. used a 1D array of optical cavities to study
2D topological physics [see Fig. 5(d)], with one dimension
being the OAM dimension and the other being the spatial di-
mension[208]. By engineering a hopping phase along the OAM
dimension, it is possible to realize an effective gauge field
for photons. Consequently, topologically protected edge states
for photons in the synthetic OAM space have thus formed, and
the projected band structure versus the hopping phase displays a
Hofstadter-Harper butterfly pattern [see Fig. 5(d)]. Furthermore,
Sun et al. used a 2D geometric structure to construct a 3D syn-
thetic lattice [see Fig. 5(e)], where the extra synthetic dimension
is OAM. Particularly, they used this synthetic 3D structure to
demonstrate Wely semimetal phases[211]. Besides the above-
introduced fundamental physical effects studied in synthetic
OAM lattices, Luo et al. showed potential applications in optical
communication and quantum information by theoretically

proposing a topological photonic OAM switch[212]. They also
illustrated synthetic OAM lattice applications involving quan-
tum memory and optical filters by designing the hopping phase
and coupling between two cavities[209].

As side notes, it has also been observed that one may build a
2D synthetic space in a single cavity using OAM and frequency
dimensions[164,213]. In these proposals, the mechanisms for con-
structing the synthetic OAM dimension using an auxiliary cav-
ity with spatial light modulators and the synthetic frequency
dimension using dynamic modulation are combined in the sin-
gle main cavity. Therein, an effective magnetic flux is naturally
induced in the 2D synthetic space due to the linear dependence
between the additional propagation phase in the auxiliary cavity
for each mode and its carrier frequency. Apart from forming a
cavity to build the synthetic OAM dimension, it has also been
observed that one may establish the OAM dimension by arrang-
ing sequences of Q-plates (consisting of anisotropic liquid crys-
tal molecules) and wave plates without using the cavity. This
structure can then be used to design quantum walks in the
OAM space and study the physics therein[214]. In a different
way, theoretical and experimental efforts have been devoted
to designing effective magnetic fields for the structured modes
in free space by utilizing an intracavity astigmatic mode con-
verter to generate photonic Landau levels corresponding to a
series of exotic OAM laser modes[215].

2.2.2 Experimental progress

Although the original theoretical proposal for constructing the
OAM dimension is based on one main cavity being coupled to
an auxiliary cavity containing spatial light modulators,

Fig. 5 (a) A main cavity with an auxiliary cavity equipped with two spatial light modulators on the
two arms. (b) The coupling among OAM modes forms a tight-binding lattice. (c) The SSH lattice
constructed using OAM modes in a single degenerate optical cavity. Adapted from Ref. [53]. (d) A
2D synthetic lattice with one dimension along the OAM degree of freedom and the other dimension
along the spatial degree of freedom. The band structure displays a Hofstadter-Harper butterfly
pattern. Adapted from Ref. [208]. (e) The construction of a 3D synthetic lattice with one OAM di-
mension and two spatial dimensions. Adapted from Ref. [211].
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experimental verification is not easy with such a complicated
configuration. However, Yang et al. devised a simplified design
where they utilized a single Q-plate inside a cavity to vary the
OAM number of the light by one. By doing so, and further in-
cluding the right-handed and left-handed circular polarizations
of light, they demonstrated the construction of the synthetic
OAM lattice in the experiment[216]. They then constructed a topo-
logical photonic model and measured the topological invariant
by analyzing the band structure of the synthetic lattice therein
[see Fig. 6(a)]. As a step further, the same authors also showed
that this experimental platform can be used to study non-
Hermitian physics once loss is added to the system. In experi-
ments, they explored exceptional points (EPs) in the synthetic
OAM dimension [see Fig. 6(b)][217], pointing to potential appli-
cations in EP-based sensing. Liao et al. used a similar experi-
mental setup and realized a sharp boundary in a synthetic OAM
lattice by drilling a pinhole in the cavity. Unique features asso-
ciated with the boundary state, dynamic moving of the edge
modes, as well as spectrum discretization are observed in ex-
periments[218].

In a different experimental platform, Cardano et al. demon-
strated a discrete quantum walk in a lattice along the synthetic

OAM dimension, and showed that the OAM degree of freedom
can be utilized as a versatile photonic platform to perform
quantum simulation tasks[219]. Furthermore, they used probabil-
ity distribution moments to reveal the topological quantum tran-
sition[220] and the mean chiral displacement method to measure
Zak phases and topological invariants in the synthetic OAM lat-
tices [see Fig. 6(c)][221]. Apart from the 1D synthetic OAM
space, Wang et al. also constructed a 2D quantum walk with
one spatial dimension and one OAM dimension in the experi-
ment [see the left panel in Fig. 6(d)], where they observed topo-
logically protected bound states but with vanishing Chern
numbers [see the right panel in Fig. 6(d)][214].

2.3 Modal Dimension

We have seen that the basic strategy to construct a synthetic di-
mension is to find a set of discrete states, for example, using the
degrees of freedom from light, and then introducing the appro-
priate coupling mechanism to connect these states to form a
regular structure. It has also been noted that one may use
the spatial dimension to construct the synthetic dimension[37].
The key idea is to use the modal dimension of supermodes

Fig. 6 (a) Left panel: the cavity model used to construct the synthetic OAM lattice. Right panel: the
topological invariant obtained from the experimental data. Adapted from Ref. [216]. (b) Left panel:
a synthetic OAM lattice with loss included. Right panel: the exceptional topological band. Adapted
from Ref. [217]. (c) Detection of the topological invariant in a quantum walk along the synthetic
OAM dimension. Adapted from Ref. [221]. (d) Left panel: the construction of the 2D synthetic lat-
tice with x dimension being the OAM state and y dimension being the spatial position. Right panel:
the topologically protected bound state with vanishing Chern numbers. Adapted from Ref. [214].
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propagating in a spatially distributed array of waveguides and
connecting these discrete modal states through the evanescent-
wave coupling via the design of waveguide spacings. This idea
is interesting as there is no additional dimension added to the
physical space if we convert one spatial dimension to one syn-
thetic modal dimension. Nevertheless, the advantage is obvious
once it is noted that the coupling between modal states can be
engineered in a complex way and long-range coupling can also
be induced.

2.3.1 Theoretical model

Here, we briefly summarize the method for constructing the syn-
thetic modal dimension from the spatially distributed array of
waveguides. We first review a so-called Jx photonic lattice

[222,223],
where the interchannel coupling of the waveguide array can
map to the matrix elements of Jx and the eigenenergies of the
Jx lattice form an equally spaced ladder illustrated in Fig. 7(a).
According to the theory of angular momentum in quantum me-
chanics[224], the x-component of OAM has a relationship between
ladder operators

Jx �
J� � J−

2
: (55)

The expressions for the ladder operators are

J�jj; mi �
�����������������������������������������
�j −m��j�m� 1�

p
ℏjj; m� 1i; (56)

J−jj; mi �
�����������������������������������������
�j�m��j −m� 1�

p
ℏjj; m − 1i; (57)

where j is an integer or a half-integer, andmℏ is the eigenvalue of
the operator Jz. We set ℏ � 1 in the following for simplicity.
Based on Eqs. (56) and (57), we can get the matrix form of Jx:

�Jx�p;q �
1

2

h ����������������������������������������
�j − p��j� p� 1�

p
δq;p�1

�
����������������������������������������
�j� p��j − p� 1�

p
δq;p−1

i
: (58)

The dimension of the Jx matrix is N � 2j� 1, and the
indices p, q range from −j to j. This matrix satisfies
�Jx�p;q � �Jx�q;p, which means that if we map this matrix to
the 1D lattice the coupling is reciprocal. In photonics, one can
use waveguide arrays to construct a 1D lattice with the
Hamiltonian elements equal to matrix Jx. Therein, the coupling
strength between the nth waveguide and �n� 1�th waveguide is�������������������
�N − n�n

p
∕2[225]. Therefore, to achieve such coupling strength

arrangement in the lattice model, one should engineer the posi-
tions of the waveguides being not equidistantly distributed and
hence the coupling strength is maximum in the middle area
[see Fig. 7(b)]. By further calculating the eigenvalues of the
Jx matrix in Eq. (58), one can get the eigenvalues of the system
as −j;−j� 1;…; j − 1, j, which are equally spaced. We label
these eigenvalues with the notation l, i.e., the lth eigenvalue. The
eigenstate of the lth eigenvalue is[222]

Fig. 7 (a) The schematic eigenstate distribution of Jx lattice that is used to construct the modal
dimension. (b) Upper panel: the unequally spaced arrangement of 1D waveguides that can form
the equally spaced (in propagation constant) modal distribution in (a). Lower panel: the helical
waveguide with its oscillation period consistent with the eigenvalue interval can create the hopping
between nearby modes. (c) Upper panel: the synthetic 2D lattice with one spatial dimension and
one modal dimension. Lower panel: the arrangement of arrays of waveguides in 2D space. (d) The
schematic phase offset between nearby arrays of waveguide. (e) Upper panel: the experimental
results of light transporting in the real spatial dimension. Lower panel: the transport of light in the
synthetic modal dimension. (a)–(c) Adapted from Ref. [12]. (d), (e) Adapted from Ref. [37].
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u�l�n � 2−1
2
�N�1��n

�����������������������������������
�n − 1�!�N − n�!
�l − 1�!�N − l�!

s
P�l−n;N−l−n�1�
n−1 �0�; (59)

where P�l−n;N−l−n�1�
n−1 �0� is the Jacobi polynomial of order

(n − 1), and the range of n is n ∈ �1; N�. Figure 7(a) shows a
schematic eigenstate distribution, which gives the modal states
in waveguide arrays. These eigenstate distributions with different
eigenvalues are discrete and cannot transform into each other if
no perturbation is added, which provides the discrete states that
are needed for constructing the synthetic dimension.

We next discuss the way to introduce the connectivity be-
tween these discrete eigenstates by designing the oscillation
of the array of waveguides [see Fig. 7(b)], where the oscillation
of waveguides is restricted within the z–y plane and light prop-
agates along the z direction. The variation amplitude of the os-
cillation is

R sin�Ωz� ϕ�; (60)

where R is an amplitude, Ω is the frequency that is equal to the
eigenvalue interval, and ϕ is the hopping phase. The equation to
describe the coupling between oscillatory waveguides is

i
∂
∂z

cn�z� � pneiφncn�1 � pn−1eiφn−1cn−1; (61)

where cn is the amplitude at nth waveguide, pn is the coupling
strength between the n-th and �n� 1�th waveguides,
φn � dy;nk0ΩR cos�Ωz� ϕ�, dy;n is the distance between the
n-th waveguide and �n� 1�th waveguide that is tailored accord-
ing to the coupling strength between the two waveguides, and
k0 � 2πn0∕λ is the wavenumber in the waveguide. A static
waveguide array (R � 0) supports the discrete modal states

without the connectivity. It has been found that for small R,
the oscillation gives perturbation, which introduces the connec-
tivity between modal states and hence constructs the synthetic
modal dimension in such a curved array of waveguides[37]. The
construction of the synthetic modal dimension uses the array of
waveguides along the y direction. Copying such an array of
waveguides over the x-axis can build the 2D lattice with one
spatial dimension and one modal dimension [see Fig. 7(c)].
Experimental efforts have used such a construction to demon-
strate the first photonic topological insulator in 1 real-space �1
synthetic-space dimension[37].

2.3.2 Experimental progress

Lustig et al. first experimentally realized a photonic topological
insulator in synthetic spatial-modal space[37] based on the frame-
work introduced in the previous part. The effective magnetic-
field-induced topological edge state for photons is realized
by designing an appropriate hopping phase ϕ in each column
[see Fig. 7(d)]. The experimental results show that the light
propagates clockwise along the edge of the synthetic lattice,
wherein the light with the lowest modal mode moves towards
the left direction along the spatial dimension, and then the mo-
dal mode of the light starts to convert towards higher modal
numbers when light reaches the spatial boundary [see the lower
panel in Fig. 7(e)]. Such a topologically protected edge state
cannot be seen in the original waveguide arrays in 2D spatial
space [see the upper panel in Fig. 7(e)], as the edge state is em-
bedded in the bulk in real space, which has the potential to find
possible applications in topological insulator lasers. In this
setup, the anticlockwise edge state can also be achieved by ex-
citing the lower bandgap. In contrast, once the effective mag-
netic field is tuned to zero, the topological edge state
disappears and the light in the synthetic lattice penetrates into
the bulk[37].

Fig. 8 (a) The 2D lattice in the spatial space, where each site is a helical waveguide. (b) The
synthetic 3D lattice with two spatial dimensions and one modal dimension. (c) The schematic
illustration of the screw dislocation in synthetic space including the modal dimension.
(a)–(c) Adapted from Ref. [44].

Yu et al.: Comprehensive review on developments of synthetic dimensions

Photonics Insights R06-17 2025 • Vol. 4(2)



Lustig et al. further studied 3D topological insulators based
on the synthetic space with two spatial dimensions (x–y plane)
and one modal dimension[44]. In the spatial dimension, they used
helical waveguides to construct a Floquet lattice, which has the
periodicity along with the propagation direction [see Fig. 8(a)].
This 2D lattice is topologically nontrivial through adjusting the
relative initial phase offset between the nearest helical wave-
guides. The synthetic modal dimension is then introduced to
the system by replacing each site with three waveguides, whose
refractive indices are different from each other [see Fig. 8(b)].
The set of these three waveguides can form a synthetic modal
dimension with a limited lattice site number. Nevertheless, such
system can still show an experimental feature that is associated
with the 3D screw dislocation, which is then used to reveal the
topological transport in the strong photonic topological insula-
tors [see Fig. 8(c)] and paves the way towards the potential ap-
plication based on 3D topology.

2.4 Other Degrees of Freedom

In the framework of optical systems, there are other degrees of
freedom forming discrete states that can be used to construct a
synthetic dimension. The time degree of freedom of light is a
key way to construct synthetic lattices, which we will focus
on in the next section. Here, we briefly discuss another degree
of freedom of light, namely, the polarization degree of freedom
of photon pairs[226], and show how one can use the polarization
of light to construct a synthetic dimension[227].

Light has a polarization degree of freedom, perpendicular to
its propagation direction. The difference between the polariza-
tion states of light is observed when it propagates through bi-
refringent materials. A direct laser-written waveguide in fused
silica is birefringent[228]. One can use the two modes of polari-
zation to describe light propagation in this birefringent wave-
guide, where one mode is parallel to the slow principal axis
and the other mode is parallel to the fast principal axis. The re-
fractive indices for these two modes are different, which leads to
different corresponding on-site potentials. One can use the fol-
lowing Hamiltonian to describe this system as

H � βsa
†
sas � βfa

†

faf; (62)

where as�a†s� and af�a†f� are the annihilation (creation) opera-
tors for the modes on the slow principal axis and the fast prin-
cipal axis, with propagation constants (as the on-site potential)
βs and βf, respectively.

The two modes here form a synthetic space of the two polar-
izations of light in the waveguide. However, the polarization

states are discrete, so if the synthetic dimension is desired to
be constructed, one needs to introduce connectivity between
them. To do so, one can rotate the waveguide using the follow-
ing procedure[229]. First, one can assume that the fast principal
axis is along the horizontal direction (H) and the slow principal
axis is along the vertical direction (V). Next, the waveguide gets
rotated clockwise with an angle α [see Fig. 9(a)]. The two polar-
izations of the light can be considered to be along the horizontal
and vertical directions of the waveguide, i.e., H and V.
Therefore, the Heisenberg equation of motion for this dynamic
process is

i
d
dz

�
a†H

a†V

�
�

�
β̄� Δ cos 2α;Δ sin 2α

Δ sin 2α; β̄ − Δ cos 2α

��
a†H

a†V

�
; (63)

where a†H and a†V are the creation operators for the horizontal
polarization mode and the vertical polarization mode, β̄ �
�βs � βf�∕2 is the mean propagation constant, and Δ �
�βs − βf�∕2 is the birefringence strength. Interestingly, Eq. (63)
is mathematically equivalent for two coupled and detuned
waveguides. However, for the coupled polarization degree of
freedom, the on-site potential Δ cos 2α and the coupling
strength Δ sin 2α both can be controlled by the birefringence
strength. When α � π∕4, the on-site potentials for both modes
are equal and the coupling strength between the two modes is
maximum.

Ehrhardt et al. used the above setup to verify the Hong-Ou-
Mandel effect [see Fig. 9(b)] using a correlated photon source,
where they can explore quantum optical phenomena from the
quantum walks of photons in the synthetic polarization dimen-
sion. In particular, they used two and even three waveguides to
explore quantum interference of correlated photons on 3D
graphs, which may open up avenues for experimental explora-
tions of quantum dynamics, and for emulating many
bosonic or fermionic models including further study of the non-
linearities and nontrivial topologies with the graph isomorphism
problem on optical platforms[230].

The construction of the synthetic dimension using the polari-
zation states in the birefringent waveguides gives a continuous
model in the time evolution [or the propagation distance; see
Eq. (63)]. On the other hand, there are also many works using
sets of quarter-wave and half-wave plates to manipulate the
polarization states of light in a sequence, where a discrete
quantum walk on the two polarization states can be demon-
strated[221,231–235]. Although some of these works may not claim
the construction of synthetic dimensions, the connectivity is
built between discrete polarization states and the unitary

Fig. 9 (a) Direct laser-written waveguides in fused silica. (b) Experimental setup for using the
polarization degree of freedom to verify the Hong-Ou-Mandel effect. (a), (b) Adapted from
Ref. [227].
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conversion processes occur based on a lattice framework, which
makes these photonic quantum walks using the polarization de-
gree of light be an important supplement to the synthetic dimen-
sion in optical systems. Other than the polarization states, the
transverse momentum of light can be engineered to design syn-
thetic dimensions. For example, D’Errico et al. used the 2D mo-
mentum lattice to reveal the topological quantum walks[236] and
two correlated photons in quantum walks[237]. Moreover, the
geometrical angular coordinate around a ring resonator has also
been used to construct the synthetic dimension, where a combi-
nation between synthetic dimensions and effective magnetic
fields with local interactions was proposed[238].

3 Optical Systems: Time-Multiplexed
Pulses

The previous section uses the discrete states of light as the basic
components to create the synthetic dimension. As one of the
most important parameters for light, the time information has
not been discussed in the previous section, despite the volume
of research into temporal synthetic dimensions in the past few
years[39,45,50,51,239–252] (and a long history of time-bin multiplexing
for myriad other applications). Unlike synthetic dimensions em-
ploying discrete photonic states, where the models usually can
be treated safely as continuous evolutions in time from a cor-
responding Schrödinger equation, the time dimension here is
not straightforward in a similar fashion. In this section, we will
see how one uses the temporal ordering of light pulses inside a
ring as the basic components to construct the synthetic dimen-
sion (i.e., the synthetic time lattice built from the time-multi-
plexed pulses with a fast integer time variable), where the
dynamics of the model evolves in discrete steps in time (a slow
integer time variable)[20,253]. Nevertheless, we shall see that with
discrete-time models, one may still be able to simulate various
physical phenomena, and more importantly, this kind of system
provides a natural platform to emulate quantum walks.

We organize this section as follows: in the theoretical model
part (Sec. 3.1), we introduce the model to describe the construc-
tion of the synthetic dimension using time-multiplexed pulses.
In Sec. 3.2 and Sec. 3.3, we introduce the novel physical phe-
nomena in these synthetic time lattices using single loops and
two coupled loops, respectively. Lastly, we briefly summarize
this section in Sec. 3.4.

3.1 Theoretical Model

In this subsection, we review the basic idea of constructing the
synthetic time lattice using the temporal axis of light based on a
time-multiplexed network. This method is developed to facili-
tate the connectivity between pulses at different arrival times in
fiber loop(s) using delay lines or by coupling two loops with a
length difference. We start using delay lines in a single loop to
construct the synthetic time dimension in the first part and dis-
cuss its extension by coupling two loops to form the synthetic
time lattice in the second part.

3.1.1 Time-multiplexed network in a single loop

We consider a main fiber loop in Fig. 10(a), where optical pulses
can propagate along the main loop. A sequence of pulses cir-
culates inside the loop with equal time intervals between two
nearest-neighbor pulses (labeled as δt), where the time degree
of freedom of each pulse is specified by the arrival time of the
pulse on a reference position inside the main loop. We can use

the discrete index n to label each pulse and un to mark the am-
plitude of the nth pulse. To induce connectivity between the
nearest-neighbor pulses, two delay lines are introduced into
the main loop. One should then deliberately design the lengths
of two delay lines (where the longer one is Ll and the shorter
one is Ls) and the length between two joint points inside the
main loop as Larc to satisfy the condition Larc − Ls �
Ll − Larc � vgδt, where vg is the group velocity for the field
in the fiber loop. Then a portion of un in the nth pulse can
go ahead of (behind) the �n − 1�th pulse [�n� 1�th pulse]
through the shorter (longer) delay line and contribute to
un−1�un�1�, and vice versa[254]. Following such procedure, a
tight-binding type connectivity between pulses is built after
the fields finish each round trip circulation (labeled by an integer
m), where un in the nth pulse at the �m� 1�th round trip con-
sists of a combination of the major portion of un and small por-
tions of un−1 and un�1 at the mth round trip [see the lower panel
of Fig. 10(a)]. This hence constitutes the most basic construction
of a synthetic time lattice in a single loop. In principle, the con-
nectivity can be manipulated arbitrarily to be a long range of
order N by introducing suitable delay lines that satisfy
Larc − Ls � Ll − Larc � Nvgδt. Moreover, the synthetic lattice
evolves with discrete time-steps, quantified by the number of
round trips for the pulse circulation.

3.1.2 Time-multiplexed network in coupled two loops

A potentially simpler design for constructing the synthetic time
lattice (or time-multiplexed mesh lattice) is to use two loops
with different lengths coupled by a 50/50 coupler, as shown
in Fig. 10(b). In this setup, again the sequence of pulses gets
circulated, now in two loops, and one can use the arrival time
to label pulses in each round trip. We assume the time for a pulse
to complete one round trip in the short loop as Ts and the time
for that in the long loop as Tl. The time difference is set to
be Tl − Ts � 2ΔT, and the average time is �Tl � Ts�∕2 � T,
so Ts and Tl can be re-written as Ts � T − ΔT and

Fig. 10 (a) Synthetic time dimension created from a main loop
with short and long delay lines to couple pulses. Upper panel:
the main loop for time-multiplexing, which incorporates green
and purple delay lines to induce the hopping between nearest-
neighbor pulses. Lower panel: the lattice network in synthetic
time dimension. (b) Synthetic time dimension created from two
loops of unequal lengths. Upper panel: the short loop and long
loop are connected by a 50/50 coupler. A phase modulator can
impose phases on pulses in the long loop. Lower panel: the lat-
tice network in synthetic time dimension, where n constitutes the
1D synthetic lattice and m denotes the evolution time.
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Tl � T � ΔT. We denote a pulse at the nth arrival time in the
short loop as umn and a pulse at the nth arrival time in the long
loop as vmn for the mth round trip. Hence the time that a pulse
arrives at the coupler is defined as t � mT � nΔT. Now two
pulses umn and vmn arriving at the coupler together can contribute
to the pulse circulating in the short loop for the next round trip
with the time ΔT ahead (i.e., the pulse spends time Ts for a
round trip), which gives um�1

n−1 . This process can be expressed
as[8,20]

um�1
n−1 � 1���

2
p �umn � ivmn �: (64)

Similarly, the same two pulses can contribute to the pulse cir-
culating in the long loop instead, which makes ΔT behind as the
pulse spends time Tl for the next round trip, which leads to v

m�1
n�1

by

vm�1
n�1 � 1���

2
p �iumn � vmn �eiϕ�n�: (65)

Here ϕ�n� is the modulation phase that can be imprinted from
the phase modulator in the long loop. The lower panel in Fig. 10
(b) shows the hopping diagram described in Eqs. (64) and (65),
forming the discrete m − n mesh grid, which creates the syn-
thetic time lattice model.

3.2 Physics in a Single Loop

There are many interesting phenomena that can be observed in
the time-multiplexed network in a single loop, using the concept
of the synthetic time lattice. As examples, we discuss achieve-
ments in photonic emulation of the Ising machine, topological
physics observed with dissipative photonics, efforts towards
quantum computation, and realization of quantum walks.

3.2.1 Ising machine

The Ising model, which models magnetic interactions in spin-
chains, has been proposed to tackle quadratic unconstrained
binary optimization (QUBO) problems by mapping the binary
variables of interest to individual spins on a chain and finding
the ground state of the corresponding Ising Hamiltonian. This
method can have potential applications in drug discovery[255]

and artificial intelligence[256]. Classical annealing methods have
already shown great promise for utilizing Ising machines as
hardware solvers[257]. However, quantum annealing, which takes
advantage of quantum tunneling and superposition, shows great
potential to speed up the optimization process[257]. Marandi et. al.
therefore have used the synthetic time dimension framework
for the construction of the coherent Ising machine in the experi-
ment[258], which we briefly introduce here.

The standard Hamiltonian of the Ising model is[258]

H � −XN
ij

Jijσiσj; (66)

where σi represents the ith z projection of the spin, and Jij is the
coupling between spin σi and σj. The photonic emulation of the
Ising model is applied in a time-multiplexed network as shown
in Fig. 11(a), where four sequenced pulses with the same time
intervals are circulating inside the fiber loop and represent four
spins [see Fig. 11(b)]. The binary phase of the degenerate

optical parametric oscillator (OPO) above the threshold[259]

mimics the spin up and spin down states, and they are coupled
to each other below the threshold to realize a superposition of
different spin configurations. The couplings Jij between each
spin [see Fig. 11(c)] are tailored by controlling the three delay
lines. More flexible connectivities beyond the nearest neighbor
have been obtained using a measurement-feedback architecture
for nearly arbitrary amplitudes of the Jij coupling. When the
frustrated Ising the spin model is considered, the couplings
are set to be out-of-phase, Jij < 0. Ground energy of the
Hamiltonian in Eq. (66) corresponds to a set of eigenstate dis-
tributions, which are given by the alignment of the spin patterns,
and the Ising Hamiltonian’s energy spectrum is thus mapped
onto the loss of each coupled OPO state. In order to obtain
the ground energy, one can gradually increase the OPO gain
by increasing the pump field, until the OPO gain balances
out minimum loss, which corresponds to the minimum energy
of the Ising problem [see Fig. 11(d)], and collapses the super-
position of degenerate OPOs to a spin configuration correspond-
ing to this ground state. Hence, at this stage, only the ground
states from the Ising Hamiltonian in Eq. (66) can stably exist
in the system and then be observed.

3.2.2 Dissipative photonics

Dissipation is ubiquitous in all areas of physics[260,261], and is typ-
ically a deleterious effect in the study of particle transport dy-
namics, but can be a resource in nonlinear physics for creating
optical solitons. Besides this, dissipation can also be used to
realize exceptional points in non-Hermitian Hamiltonians, offer-
ing possible improvements for optical sensing[28]. Recently,
Leefmans et al. revealed that dissipation can also be utilized
to engineer the topological nature of a system[244], using a
time-multiplexed photonic network and introducing dissipative
coupling in a synthetic time lattice.

In the experimental setup [see Fig. 11(e)], a single loop,
where a sequence of pulses circulates inside, is used to construct
a lattice model in the synthetic time dimension. The delay lines
are also introduced in the loop contributing to a dissipative cou-
pling between lattice sites. The modulators are added in the de-
lay lines, which are set to design the coupling strengths and
phases. In such a configuration, one can construct the dissipative
SSH lattice model, where the Hamiltonian is purely imaginary,
so the topological invariants now are calculated from topologi-
cally nontrivial imaginary bands. In experiments, one can ob-
serve the diffusion of the pulses where the energy couples
into the initially unoccupied lattice sites to form a topologically
trivial structure [see Fig. 11(f)]. On the other hand, if the topo-
logically nontrivial model is constructed, the distribution of the
pulses in the synthetic time lattice is consistent with the theo-
retical topologically protected edge state distribution [see
Fig. 11(g)].

The synthetic time lattice configured here can also be ex-
panded to two dimensions by incorporating multiple delay lines.
For example, the same loop is coupled with four delay lines, two
of which are introduced additionally to provide the long-range
coupling, in which way the lattice in the time dimension can be
folded to effectively a 2D lattice. In the experiment, a 4 × 10
Harper-Hofstadter (HH) lattice is then constructed in the syn-
thetic space together with the effective magnetic field induced
by setting suitable modulation phases on each pulse traveling in
the delay lines. The corresponding topologically protected edge
state is then observed in the experiments, where the distribution
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of pulses shows localization behavior along the boundary of the
synthetic lattice [see Fig. 11(h)]. The demonstration of topologi-
cal phenomena with purely dissipative Hamiltonians opens a
novel direction to understanding topological phases, which
has led to further studies including the creation of a temporally
mode-locked laser[262] and the generalization of the topological
laser proposal in a dissipative time-frequency synthetic
space[165].

3.2.3 Quantum computing

Quantum computation has been proposed as an alternative com-
putational paradigm with potential applications in combinatorial
optimization, factoring large integers, and quantum simula-
tion[263–266]. Photonics can provide alternative ways for the quan-
tum computation process[5,6]. However, operations on optical
qubits need to be conducted mid-flight, which typically requires
sequential optical components. These components make pho-
tonic quantum circuits requiring massive resource overheads,
especially to achieve fault-tolerance[267], and are hard to be in-
tegrated in photonic chips[268]. Bartlett et al. proposed a scalable
architecture for a deterministic photonic quantum computer

using the synthetic time dimension[241], with the construction
steps briefly summarized below.

Single photons propagating in the clockwise (CW) and
counterclockwise (CCW) modes of the loop constitute the pho-
tonic qubit basis j↻i and j↺i. The scattering unit consisting of
the π∕4 phase shifter, 50:50 beam splitter, an atom, and a cavity
is coupled to the loop through two optical switches, as illus-
trated in Fig. 11(i). The atom has a Λ-shaped three-level energy
structure, where two ground states jg0i and jg1i represent the
atomic qubit basis, with one of the Λ-level transitions resonant
with the cavity [see Fig. 11(j)]. In this configuration, when the
photonic qubit scatters with the atom, the photonic qubit and the
atomic qubit are then entangled. After the scattering process is
completed, a rotation operation between states jg0i and jg1i is
applied using external coherent lasers, and the measurement of
the atomic state in the jg0i and jg1i basis is also performed. Due
to the entanglement between the atomic and photonic qubits, the
operation and the measurement on the atom can be teleported to
the photonic qubit. An arbitrary single-qubit gate can be de-
signed by configuring a three-step rotation scheme, which forms
an arbitrary rotation in the Bloch sphere, providing a
direct visualization of the subsequent transformation on the

Fig. 11 (a) A single-loop system with three delay lines to design the Ising model. (b) The output
pulse train, where the pulses are labeled by OPO1 to OPO4. (c) The couplings between pulse slots
provided by three delay lines. (d) The diagram illustrating the search for the ground state, where
the OPO gain reaching the minimum energy of the Ising problem triggers a collapse of the OPOs to
the ground state distribution of the spins. (a)–(d) Adapted from Ref. [258]. (e) A main cavity with
delay lines is used to construct the synthetic time lattice with dissipative coupling. The optical field
distribution in the synthetic lattice of the 1D SSH model (f), (g) and 2D HH model (h).
(e)–(h) Adapted from Ref. [244]. (i) The CW and CCW modes in the storage ring constitute
the photonic qubits. The optical switches can guide the photonic qubits to scatter with an atom
that is controlled by a laser. (j) The atom has a Λ-shaped three-level energy structure. (k) The
transformation of the photonic qubit depicted by the Bloch sphere. (i)–(k) Adapted from Ref. [241].
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photonic qubits [see Fig. 11(k)]. More importantly, a two-qubit
controlled Z gate can be deterministically implemented by
directing the two pulses corresponding to the qubits succes-
sively on the cavity-coupled atom[269]. The prepared photonic
qubit can then be read out using the swap operation, thus sat-
isfying all of the criteria for deterministic photonic quantum
computation in the synthetic time dimension[241]. This scheme
has the potential to be significantly more scalable by re-using
the same atom or quantum emitter in the cavity in a time-multi-
plexed fashion, obviating the need for multiple such identical
atoms or emitters, which itself is experimentally challenging.
Other quantum computing schemes re-using a single quantum
emitter through time-multiplexed pulses for cluster state gener-
ation have also been proposed[270,271].

3.2.4 Quantum walk

The classical random walk puts forward the idea that the shift of
a walker is dependent on a coin toss. The quantum walk as the
quantum counterpart of the classical random walk has aroused
broad interest, as it provides insights into a quantum algorithm
to speed up search processes[272–276]. Apart from quantum
walks based on the previously introduced OAM framework,
the synthetic time dimension provides another experimental
candidate to simulate discrete-time quantum walks in photon-
ics[21,226,239,249,251,277–280]. A typical quantum walker can be de-
scribed by the product of the position Hilbert space Hx and
the coin Hilbert spaceHc, where the evolution of the wave func-
tion under the quantum walk is[277]

jΨ�t1�i � Ŝ Ĉ jΨ�t0�i; (67)

where Ĉ is the coin operation and Ŝ is the step operation. For the
coin operator, the polarization degree of freedom of light is usu-
ally a good candidate to perform the coin toss procedure. The
position operator Ŝ that moves the quantum walker according to
the result of the coin toss with the expression[277]

Ŝ �
X
x∈Z

�jx� 1; Hihx;Hj � jx − 1; Vihx; Vj�; (68)

where H is the horizontal polarization and V is the vertical
polarization, is emulated in the spatial dimension as before.
The use of the synthetic time lattice is to replace such movement
with the conversion between pulses at different arrival times.
There are several important experiments that have achieved this,
which we summarize in the following.

Nitsche et al. demonstrated dynamic control of a 1D discrete-
time quantumwalk by actively adjusting the coin operator, where
tunable graph structures can now be observed[277]. Barkhofen
et al. configured a topological structure by designing time-
reversal symmetry, particle-hole symmetry, and chiral symmetry
into the synthetic time lattice, and topological invariants were
measured and edge states were observed during the discrete-time
quantum walks[278]. Lorz et al. studied a four-dimensional coin
operator by adding clockwise- and counterclockwise-propagat-
ing modes in the loop, where multiple wavefronts are observed
in the quantum walk process[279]. Chalabi et al. used two beam
splitters in the loop model to construct a 2D synthetic lattice[280],
where the effective gauge field in the discrete-time multiplexed
quantum walk can induce bandgaps and give rise to suppressed
diffusion. Besides this, they also showed a particular walk along
the domain boundary when two topological edge states with

opposite velocities are excited. Moreover, Chalabi et al. engi-
neered synthetic electric fields into the 2D quantum walk, where
Bloch oscillations, revival of the optical field, and waveguide
photons in nonuniform electric fields were experimentally ob-
served in the time-multiplexed network[239]. The same group
has more recently demonstrated dynamic control of the non-
Hermitian skin effect in 2D quantum walks[252]. Schreiber et al.
used the time-multiplexed network to construct a 2D quantum
walk, where two-particle dynamics and strong nonlinearities
were experimentally obtained[21].

Non-Hermicity and Anderson localization can also be ex-
plored in the time-multiplexed network by incorporating wave
plates to introduce polarization-dependent on-site loss and
incorporating an electro-optical modulator to induce walker-
position-dependent disorder, respectively. Lin et al. thus dem-
onstrated the interplay of non-Hermiticity, disorder, and topol-
ogy, where they observed the non-Hermitian skin effect,
Anderson localization, and disorder-induced topological phase
transitions [see Fig. 12(a)][246]. The non-Hermicity can be further
combined with the quasiperiodicity by constructing an Aubry-
André-Harper (AAH) model in the synthetic time dimension.
Lin et al. used the polarization- and position-dependent phase
operators to fulfill the quasiperiodicity condition, and notably,
they experimentally observed the mobility edge as well as the
concurrence of global delocalization-localization transitions, the
spectral topological transition, and the PT-symmetry breaking
transition[245]. In the non-Hermitian framework, an interesting
correspondence between non-Hermitian spectral topology and
transient self-acceleration was also experimentally unveiled
by Xue et al., where they showed that the 1D self-acceleration
is proportional to the spectral area encircled by the complex
eigenenergy while the 2D self-acceleration is proportional
to the volume encircled by the complex eigenenergy [see
Fig. 12(b)][251]. The non-Hermicity together with the synthetic
magnetic flux can be utilized to engineer the directional flow
of light in the 2D square lattice, where Lin et al. used the
time-multiplexed 2D quantum walk to reveal the novel phenom-
ena, including the adjustable orientation of the non-Hermitian
skin effect by controlling the photon-loss parameters, the sup-
pression of the bulk flow by applying the magnetic confinement,
and the Floquet topological edge modes under the impacts from
non-Hermiticity and the magnetic flux [see Fig. 12(c)][249].

Before ending this part, we want to discuss the distinction
between the simulations of quantum walks in the synthetic time
dimension and the universal model of quantum walks for quan-
tum computation[275]. Although classical light is used in experi-
ments, the evolution of light forms the dynamics on a synthetic
time lattice following a well-defined evolution equation depen-
dent on the local coin choice, for example, Eq. (68). It then pro-
vides the basic framework of discrete-time quantum walks of
single particles, and hence leads to an experimental platform
in photonics to simulate the dynamics of quantum walks for sin-
gle particles. However, if one considers the quantum walker for
quantum computation, the interaction between walkers has to be
added into consideration, which might need to overcome the
bigger challenge of realizing strong photon-photon interactions
in optical platforms[281].

3.3 Physics in Two Loops

In the previous part, we discussed interesting physics explored
in the synthetic time lattice using a single loop. Although the

Yu et al.: Comprehensive review on developments of synthetic dimensions

Photonics Insights R06-22 2025 • Vol. 4(2)



models constructed in a single loop are straightforward to be
understood using the tight-binding picture as illustrated in
Fig. 10(a), the two-loop configuration in Fig. 10(b) has been
developed with more broad aspects due to its relatively simpler
setup in experiments. Here, we show some outstanding
instances of studying various physical models in two loops.

3.3.1 Topology

The photonic topological effect can be used to control the flow
of light[282–285], where different platforms use ferrite rods[282], de-
lay lines[283], etc., to create the effective magnetic field for pho-
tons to break the time-reversal symmetry of the system and then
create topologically protected edge states. The time-multiplexed
network formed by two loops can provide reconfigurable and
scalable synthetic time lattices, which manifests a powerful tool
to simulate the photonic topological effect[39,45,240,243,248,250,286–289],
where the phase modulator in the loop provides the effective
magnetic field for photons.

Weidemann et al. constructed the prominent 1D topological
structure, the SSH model, in the synthetic time dimension based
on the two-loop setting, where they displayed the topological
funneling of light with the incorporation of the non-
Hermitian effect [see Fig. 13(a)][39]. With the two-loop setup,
they designed the modulation phase to induce effective vector
potentials for the construction of the AAH model in the syn-
thetic time dimension, which results in the Floquet Hofstadter
butterfly pattern in the energy spectrum [see Fig. 13(b)][45]. The
topological triple phase transition is also observed in this
experiment, where the bulk metal-insulator phase transition,
topologically nontrivial phase for the non-Hermitian Floquet
model, and parity-time (PT) symmetry breaking simultaneously
emerge in experiments by controlling one single parameter [see
Fig. 13(c)][45]. A method to quantify the topological invariant has
also been developed on this platform. For example, Longhi et al.

demonstrated the dynamical topological winding of the synthetic
lattice by adopting the mean survival time of a pulse to
characterize the topological winding of the non-Hermitian sys-
tem[288]. Wimmer et al. also used the anomalous displacement of
wave packets to obtain the Berry curvature in the mesh lattice
based on the two-loop setting[286]. In addition, Ye et al. used sca-
lar and vector gauge potentials to experimentally design the elec-
tric and magnetic Aharonov-Bohm effect in the synthetic time
dimension, which shows the potential application in quantum
information processing[248]. Moreover, temporal refraction and
reflection has been observed at gauge potential interfaces[248], in-
cluding novel phenomena such as temporal Goos-Hänchen
shift[290], and based on moving gauge potential barriers[291].

A single-shot technique to measure the band structure from
the synthetic time lattice has also been developed for observing
topological effects, where bandgaps close and reopen by con-
trolling the modulation phase[243]. The emergent topology in
the band closing and reopening process can then be used to real-
ize a time-reversal operation by utilizing the exchange of eigen-
states. Based on this mechanism, Wimmer et al. realized the
restoration of a pulse sequence in the photonic time lattice[287].
Adiyatullin et al. used heterodyne measurement to directly visu-
alize the bulk winding bands as well as the bands with anoma-
lous edge states in the synthetic time lattice, where they found
Bloch sub-oscillations within the bulk and edge states at the in-
terface[250,292]. The robustness and vulnerability of the topologi-
cal anomalous Floquet interface state are also experimentally
examined by Bisianov et al[240].

Besides various topological phenomena based on the dual-
loop temporal synthetic dimension that we summarized above,
a recent work has also suggested the important potential for us-
ing synthetic time lattices to study temporal topology[293].
Different from spatial topology, this work reports the experi-
mental observation of momentum-gap topology, manifesting

Fig. 12 (a) The non-Hermitian skin effect, Anderson localization, and disorder-induced topological
phase transitions in the synthetic time lattice. Adapted from Ref. [246]. (b) The correspondence
between self-acceleration and the spectral geometry encircled by the complex eigenenergy.
Adapted from Ref. [251]. (c) The non-Hermitian skin effect, the magnetic suppression phenomena,
and the Floquet topological edge modes in the time-multiplexed network including the non-
Hermicity and the magnetic flux. Adapted from Ref. [249].

Yu et al.: Comprehensive review on developments of synthetic dimensions

Photonics Insights R06-23 2025 • Vol. 4(2)



as temporal topological boundary states. In addition, with a new
direction of time and space-time topology, time topological
states can be observed, linked to a time-topological invariant,
which then introduces the concept of space-time topology[294].
Therefore, optical synthetic time lattices may provide a new
way for studying the concept of photonic time crystals[295,296]

and time-varying photonics[297–300].

3.3.2 Non-Hermiticity

Non-Hermiticity has been widely explored by the photonics
community[29,301,302]. The introduction of non-Hermicity in a
time-multiplexed network reveals numerous novel physical ef-
fects[20,39,45,51,242,247,253,288,303–307], which promotes potential applica-
tions in optical sensing and light harvesting. Wimmer et al.
utilized the phase gradient generated from the phase modulator
to form a linear potential for Bloch oscillations and utilized
acousto-optical modulators to generate the effective gain
and loss for the system, where they discovered secondary emis-
sions during the Bloch revivals. They also demonstrated
reconstruction of the non-Hermitian band structure using
Bloch oscillations[304]. Regensburger et al. explored the synthetic
photonic lattice with parity-time symmetry, where power
unfolding, secondary emissions, and unidirectional invisibility
are experimentally obtained[20].

Steinfurth et al. utilized amplitude modulators to induce con-
trollable gain and loss of the system, which plays the role of the
imaginary part of the lattice potential. In addition, they utilized
phase modulators to induce the hopping phase of the light in the
mesh lattice in the time dimension, which plays the role of the

real part of the underlying lattice potential[247]. By designing
suitable parameters in experiments, they realized shape-
preserving beam transmission and non-Hermitian-induced
transparency [see Fig. 14(a)][247].

The specific design of the intensity modulations and phase
modulations can also be used to explore Dirac mass with optical
gain and loss included[51]. Yu et al. used the synthetic time lattice
to experimentally reveal phenomena related to Dirac masses. In
their design, by carefully tuning the gain/loss parameter g, they
build a massive Dirac cone, following the effective Dirac
Hamiltonian[51]

Heff � M�g�σ1 �
1

2
vDkσ2 − vD�ϕ − π�σ3; (69)

where σ1;2;3 are the Pauli matrices, k is the quasimomentum, ϕ is
a tunable phase parameter,M�g� � cosh�g − 1� is the real Dirac
mass, and vD is the Dirac velocity. The scalar potential barrier
formed by appropriately engineered phase modulation is added
into the synthetic time lattice, and Klein tunneling of massive
Dirac quasiparticles is experimentally observed. Furthermore,
with proper design of the gain and loss of the system, the sign
flip of the mass is also engineered to realize control of time re-
flection and refraction [see Fig. 14(b)][51].

The dissipation-induced non-Hermicity in time-multiplexed
networks in two loops can be further adapted to reveal novel
Anderson localization phenomena, where the disorders are in-
troduced from the modulators[242]. The resulting stochastic dis-
sipation leads to the breakdown of the Hermitian Anderson

Fig. 13 (a) Topological funneling of light in the synthetic time lattice. Adapt from Ref. [39]. (b) The
Floquet Hofstadter butterfly pattern of the AAH model in the synthetic time lattice. (c) The topo-
logical triple phase transition by controlling one single parameter, which is the coupling coefficient
β. (b), (c) Adapted from [45].
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model, where dynamical delocalization and spectral localization
are concurrently observed in the experiment [see Fig. 14(c)][242].

3.3.3 Thermodynamic processes in photonics

Thermodynamics, with temperature as an important physical
quantity, is significant in many physical processes including
superconductivity[308,309], photovoltaic module electrical perfor-
mance[310], and soil carbon decomposition[311]. The photonic
synthetic time lattice is capable of simulating phenomenon
involving thermalization[50], where Joule expansion effects
and isentropic expansions-compressions can be experimentally
simulated at a negative temperature. The underlying mapping to
the thermodynamic process under negative temperature is sum-
marized as follows.

We again consider two coupled loops with a slight length
difference to construct the synthetic time lattice [see Figs. 15(a)
and 15(b)]. A segment of nonlinear fiber supporting photon-
photon interaction (four-wave mixing) is used to simulate a ther-
malization process with the evolution in this time-multiplexed
mesh lattice[312,313]. According to the framework of thermody-
namics, the temperature T can be described by entropy S and
internal energy U, e.g., 1∕T � ∂S∕∂U [see Fig. 15(c)]. Novel
phenomena associated with the temperature can be explored,
for example, a system with a positive temperature favors lower
energy states while the microcanonical system with a negative
temperature favors high energy levels [see Figs. 15(d) and
15(e)]. In the experiment, the band structure of the correspond-
ing synthetic time lattice is designed as[50]

cos εk � −C cos

�
2 kπ
M � 1

�
− �1 − C� cos�φ0�; (70)

where C is the coupling coefficient between two loops,M is the
total lattice sites, k ∈ �1; 2;…M� is an integer that mimics the

Bloch momentum, and φ0 is the constant phase to control
the bandgaps. The internal energy U and the total optical power
P can be obtained according to its eigenvalue and corresponding
eigenstate, which are expressed as

�
U � PM

k�1 εkjckj2;
P � PM

k�1 jckj2:
(71)

The entropy can then be obtained by calculating the eigenstate
distribution, S � PM

k�1 ln jckj2. When one initially excites the
negative part of the band structure (εk < 0), a negative value
of U can be acquired (U � −22). On the other hand, the pos-
itive value of U (U � 25) can be prepared by initially exciting
the positive part of the band structure (εk > 0). Referring to the
entropy-energy diagram in Fig. 15(c), the choice of U can there-
fore realize the positive and negative temperature conditions in
experiments. The optical thermalization in the experimental ob-
servation matches the theoretical prediction in Figs. 15(d) and
15(e). The coupling strength between synthetic lattice sites ad-
justed by the coupler between two loops can also be utilized to
simulate the isentropic compressions and expansions with neg-
ative temperature conditions. Counterintuitive phenomena are
then simulated in the experiments, where the system shows a
cooling tendency during the compression under the negative
temperature condition [see Fig. 15(f)]. Furthermore, by expand-
ing the lattice range, the synthetic mesh lattice is also able to
experimentally simulate the Joule photon-gas expansion.
Novel phenomena related to the Joule irreversible expansion
are revealed under negative temperature, e.g., the temperature
rise of thermalized photon gas after suffering a sudden expan-
sion [see Fig. 15(g)][50].

Fig. 14 (a) The shape-preserving beam transmission and non-Hermitian-induced transparency
phenomena in the synthetic time lattice. Adapted from Ref. [247]. (b) The time reflection and re-
fraction phenomena at the interface formed by the mass-flipping temporal boundary. Adapted from
Ref. [51]. (c) The exponential localization at time stepm � 110 and the mean value of the second
moment in the non-Hermitian Anderson model. Adapted from Ref. [242].
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3.3.4 Quantum walk

The two-loop setup for the synthetic time lattice is also capable
of simulating quantum walks in experiments. The coupler be-
tween two loops can play the role of the coin, and the coupler
ratio acts as the probability of getting two states of the coin,
while the pulse propagation in short (long) loops corresponds
to the left (right) movement of the walker[314]. Regensburger
et al. experimentally used a two-loop setup to reveal the ballistic
spreading of discrete-time quantum walks[253]. Numerous phe-
nomena are shown in the synthetic time dimension based on
the two-loop setting, for example, the non-Hermitian-poten-
tial-induced invisibility[315] and unconventional anomalous top-
ology emerging during the discrete quantum walk[289].

Random walks present completely distinct behaviors for
quantum and classical particles, and Longhi et al. used traps
in the synthetic lattice to distinguish the difference between
these two realms [see Fig. 16(a)][316]. With a similar construction
to build a synthetic time lattice in two-loop resonators [see
Fig. 10(b)], the discrete-time equations for the light dynamic
in the loops can be described as[316]

�
um�1
n � �cos�β�umn�1 � i sin�β�vmn�1� exp�−iϕm

n − γn�;
vm�1
n � �cos�β�vmn−1 � i sin�β�umn−1�;

(72)

where β defines the coupling strength of the fiber coupler, ϕm
n is

the modulation phase induced by the phase modulator, and γn is
the loss induced by the amplitude modulator that can mimic the
trap at site n. The design for the quantum random walk can be
realized by setting ϕm

n � 0, which indicates a coherent walk,
while for the classical random walk, the modulation phase is
randomly distributed in the range �−π; π�, which indicates an
incoherent walk. Four traps are distributed in the 1D synthetic
time lattice at different sites with loss rates being γn∕J � 1, 0.4,
0.5, and 0.6, where J � 0.5 cos β. The simulation results show

different behaviors of a photon in the two situations. For the
classical random walker, the photon is annihilated by the dissi-
pative traps and the walk process is terminated [see Fig. 16(b)],
while for the quantum random walk, the photon can tunnel out
of the traps and continue the walk process [see Fig. 16(c)].

3.4 Summary of the Time-Multiplexed Pulses

In this section, we give a comprehensive summary of using
time-multiplexed pulses to construct the concept of a synthetic
time dimension. The arrival time of pulses in the optical loop(s)
is used to label each synthetic lattice site while delay lines added
in the single loop or two loops with a length difference are used
to introduce connectivity between different sites, so the tight-
binding lattice model is built along the temporal positions inside
each round trip while the model evolves along the multiple
round trips. In the single loop framework, we review frontier
research progress, such as the Ising model, dissipative photon-
ics, quantum computation, and quantum walks. On the other
hand, in the two-loop framework, we discuss some remarkable
physical effects therein, e.g., topology, non-Hermitian effects,
thermodynamics, and quantum walks vs classical walks.
However, there are many other works that we do not get into the
details of here, such as Landau-Zener tunneling [317,318], sampling
problems[319], quantum state processing[320], Kapitza light
guiding[321], Tera-sample-per-second arbitrary waveform gener-
ation[322], and quantum walks in the synthetic time dimension
based on a sequence of birefringent α-barium borate crystals[323].
Furthermore, localization features of physical models have been
studied in the synthetic time dimension[324], such as dynamic
localization[325–327], Anderson localization[246,328,329], and quasi-
crystals[245]. Hydrodynamic phenomena[330] and superfluidity
of light[331] have been studied and trigger further interest to ex-
plore the dynamics of fluids of light based on a time-multiplexed
mesh lattice. Nonlinearity in the synthetic time lattice[332,333] has

Fig. 15 (a) The optical platform including two fiber rings and various components. (b) The time-
synthetic mesh lattice constructed by the two-loop setup. (c) Entropy-energy diagram based on the
framework of thermodynamics. The eigen-spectrum under the positive temperature (d) and neg-
ative temperature (e). (f) The isentropic compression and expansion under the negative
temperature condition. (g) The optical Joule expansion in the negative temperature regime.
(a)–(g) Adapted from Ref. [50].
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also been explored to seek potential applications in soliton-
based gas sensing[334] and optical neural networks[254,335]. Some
counterintuitive phenomena have been experimentally simu-
lated by taking advantage of this unique platform. For example,
Wimmer et al. demonstrated the optical diametric drive accel-
eration by breaking the action-reaction symmetry[336]. In general,
the synthetic dimension based on time-multiplexed pulses can
fulfill promising functionalities covering fundamental physics
and possible applications[252].

4 Atomic Systems: Cold Atoms
The synthetic dimension is widely studied in the atomic systems
where atomic states are used to build the extra dimensionality
and the connectivity is induced by external lasers and electro-
magnetic fields (radio frequency and microwave). The field of
atomic synthetic dimensions includes many efforts and ap-
proaches spanning low-energy atomic states, laser-excited meta-
stable states and Rydberg states, discrete states of atomic
motion, and even synthetic dimensions by parametric encoding.
In this section, we discuss the former three topics, which mainly
focus on the use of a discrete degree of freedom in the cold atom
platform. We review the basic conceit underlying each of these
approaches, discuss considerations relevant to the study of inter-
actions and many-body physics, and review key progress and
results from the past decade. Related efforts on superradiant
states of neutral atoms, ultracold molecules, and parametric syn-
thetic spaces will also be touched on here and in later sections.

4.1 Model

4.1.1 Intrinsic atomic states

We take the 87Rb model as an example from Ref. [83] to briefly
introduce the idea of using the intrinsic atomic states to build the
synthetic dimension. In many ways, the picture of using laser-
coupled or Raman-coupled atomic states to encode a synthetic
dimension was a natural extension of previous work on spin-or-
bit coupled quantum gases[337–341]. As considered in Ref. [83] and
illustrated in Fig. 17(a), atomic moving in a hybrid 2D lattice

involving real-space and synthetic-space motion may be real-
ized by first confining atoms in a 1D optical lattice, shown along
the x-axis with a lattice constant of a � λ∕2 and for a lattice
laser wavelength of λ � 1064 nm. A moderate lattice depth
of V lat � 5EL (where EL � ℏ2k2L∕2M is the lattice recoil
energy, with kL � 2π∕λ the recoil momentum andM the atomic
mass) is chosen to validate the tight-binding approxima-
tion while still enabling appreciable hopping in real space,
characterized by a nearest-neighbor tunneling amplitude of
t � 0.065EL. Considering the ground hyperfine (F � 1) mani-
fold, a small bias magnetic field with strength B0 defines a set of
three magnetic sublevels jmF � 0;�1i [see Fig. 17(b)] that are
Zeeman-split in energy by ℏω � gFμBB0, where μB is the Bohr
magneton and gF is the Landé g factor. The MHz-level Zeeman-
splitting for Gauss-level B0 fields would far exceed any other
energy scales (t, thermal energies, or interaction energies) in
the system, but connectivity between the bare atomic states
can be realized by Raman transitions via a pair of coherent laser
fields, where the laser fields can be expressed via an effective
magnetic field[83]:

ΩT � δez � ΩR�cos�2kRx�ex − sin�2kRx�ey�; (73)

where δ is the detuning, kR � 2π cos�θ�∕λR is the Raman recoil
wave vector, θ is the angle deviating from the x-axis, λR is the
wavelength of the Raman lasers, ΩR is the Raman coupling
strength, and ℏ � 1 is taken. The effective atom-light
Hamiltonian is[83]

Hal � ΩT · F � δFz � �F�eikRx � F−e−ikRx�ΩR∕2; (74)

where F� � Fx � iFy can lift/lower the atomic state jmi, e.g.,
F�jmi � gF;mjm� 1i, wherem � −F;…; F is the label of the
sublevels and gF;m �

�����������������������������������������������
F�F� 1� −m�m� 1�

p
. The x-depen-

dent hopping phase can then generate Peierls phases when
atoms move along the m direction. The combination of the
1D optical lattice in the x direction and the synthetic dimension
along intrinsic atomic states can yield a hybrid 2D lattice

Fig. 16 (a) The classical random walk and the quantum random walk in the 1D lattice with anni-
hilation traps. The survival probability for the classical random walk (b) and the quantum random
walk (c). (a)–(c) Adapted from Ref. [316].
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[see Fig. 17(c)], and the corresponding 2D Hamiltonian with
δ � 0 is[83]

H �
X
n;m

�−ta†n�1;m � Ωm−1e−i2kRana†n;m−1�an;m � h:c:; (75)

where n is the spatial index, Ωm � ΩRgF;m∕2 is the correspond-
ing synthetic hopping strength, and a†n;m and an;m are the cre-
ation and annihilation operators, respectively. One convenient
feature of the synthetic dimension is that “site-resolved” detec-
tion along that axis can be achieved relatively simply, using
techniques such as the Stern-Gerlach separation of magnetic
sublevels.

Thus, the spin-orbit-coupled atomic gas in a superimposed
stationary lattice can naturally be interpreted as a Harper-
Hofstadter-like Hamiltonian in a hybrid real/internal space,
where θ and the ratio λ∕λR define the gauge field (magnetic flux
per lattice plaquette). This approach is naturally extensible to
large-spin atoms[342]. Importantly, however, interactions along
the synthetic dimension are sensitive to the details of specific
scattering lengths for same-spin and mixed-spin configurations.
While the interactions are easy to interpret (but nearly all-to-all)
for 87Rb and alkaline earth (and alkaline earth-like) atoms with
SU�N� symmetry, they can be quite random[343] and potentially
exothermic[344] for generic multi-level atoms. To note, the use of
metastable “clock” states as a small (two-site) synthetic dimen-
sion has also been explored[345–348], but interactions are typically
quite complicated in this approach as well[349,350].

4.1.2 Rydberg atoms

Because of the complicated nature of interactions (either all-
to-all or potentially inelastic) in neutral atom synthetic

dimension experiments, it was motivated to consider the engi-
neering of synthetic dimensions in systems that are violently
inelastic when in contact[351,352] but that can support strong and
coherent interactions even when separated in real space[353,354].
While originally envisioned in the context of ultracold polar
molecules[353,354], recent development has mainly occurred in the
entirely analogous synthetic dimension of dipolar-interacting
Rydberg levels of excited atoms[16]. To note, both of these sys-
tems (molecules and Rydberg atoms) host many stable or quasi-
stable internal states that can be coupled to one another by
relatively strong electric dipole-allowed microwave transitions.
Both the Rydberg array and the polar molecule array platform
had demonstrated coherent dipole-dipole interactions[355,356] at
the time that the ideas for synthetic dimensions with dipolar spin
arrays[353,354] were developed, and earlier work had demonstrated
tight-binding-like dynamics[357,358] in both systems as well.

We emphasize here that for the synthetic dimensions of (lat-
tice-pinned) molecules and dipolar Rydberg atoms, one can sim-
ply think of these systems as dipolar spin models with rather
exotic external (transverse and longitudinal) fields relating to
the microwaves that induce direct state-to-state transitions to
mimic “hopping” in the synthetic dimension. Unlike in the
hybrid 2D lattice (real and synthetic dimensions) of spin-
orbit-coupled gases described earlier, the excitations in
Rydberg synthetic dimension experiments only experience sin-
gle-particle hopping in the synthetic space, with no hopping of
the actual particles in real space (ignoring the cases of itinerant
molecules or Rydberg-dressed atoms).

Here, we focus on the case of Rydberg synthetic dimensions,
which utilize the valence electron of Rydberg atoms as the con-
stituent particles. In contrast to conventional low-lying atomic
states, the Rydberg states refer to the valence electron of atoms

Fig. 17 (a) The proposed experimental layout to construct the synthetic dimension based on the
intrinsic states of cold atoms. (b) The three magnetic sublevels of the F � 1 ground state. (c) The
2D lattice with a combination of the 1D optical lattice and the synthetic spin lattice. (a)–(c) Adapted
from Ref. [83]. (d) The excitation of the Rydberg states through two-photon transitions. Adapted
from Ref. [360]. (e) The connection between Rydberg levels through the employment of millimeter
waves on the atomic system. Adapted from Ref. [364]. (f) A schematic diagram depicting how to
form a momentum state lattice for ultracold atoms by driving with a pair of counter-propagating
laser beams. (g) The coupling between momentum lattice sites is achieved by two-photon Bragg
transitions. (f), (g) Adapted from Ref. [368].
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being excited about high principal quantum numbers. These
states feature a large distance between the electron and the pos-
itive atomic core [see Fig. 17(d)][359,360], imbuing these states
with exaggerated properties (large polarizability, large dipole-
dipole interactions) and a lifetime that far exceeds typical laser-
excited levels. The arrangement of the valence electron and the
atomic core is similar to the hydrogen atom, and the modified
Rydberg formula to characterize the energy of such Rydberg
levels is

En;l � − Ry

�n − δl�2
; (76)

where Ry ≈ 13.6 eV is the Rydberg constant, n is the principal
quantum number, l is the orbital angular momentum of the state,
and δl is the quantum defect that accounts for the Hartree inter-
action shift of the valence electron with the core electrons[361,362].
In addition to their principal quantum number n, orbital angular
momentum l, and its projection ml, the Rydberg levels are char-
acterized by their total angular momentum J and its projection
mJ, and all together the levels are split by fine-structure as well
as Zeeman splittings in the presence of a magnetic bias field
(considering the case of zero electric fields). Spontaneous decay
and blackbody-induced decay and transitions can be mostly
ignored on short (few microseconds) timescales, and dipole-
allowed microwave transitions between Rydberg levels can be
used to explore fundamental transport phenomena in synthetic
tight-binding models[363,364]. In a finite bias field, all state-to-state
transitions are associated with a unique microwave frequency,
such that all hopping terms in the synthetic dimension can
be individually controlled due to their spectroscopic isolation.

We briefly review the general approach to Rydberg synthetic
dimensions, as explored in Refs. [360,363–367]. A comb of co-
herent microwaves that address (either resonantly or with con-
trollable detunings) a number of state-to-state transitions is
utilized to engineer the effective connectivity along the synthetic
dimension [see, e.g., Fig. 17(e) for the case of an SSH model].
Because each transition is separately controlled, the generic
form of the single-particle Hamiltonian along the synthetic di-
mension is

H �
X
i�1

�−ℏJi;i�1jiihi� 1j � h:c:� �
X
i�1

ℏδijiihij; (77)

for a simple one-dimensional geometry of state connectivities
(where the Ji;i�1 terms are the tunable inter-state coupling am-
plitudes, which can have controllable complex phases, δi are
effective site energies introduced via transition detunings, and
ℏ is Planck’s constant). Because of the large state space avail-
able and the ability to drive multi-photon processes, there are
many opportunities to engineer longer-range hopping terms
and even higher-dimensional lattices within the Rydberg syn-
thetic dimension. The physics of the engineered synthetic lat-
tice, and in particular the phenomena that arise due to
dipolar interactions between Rydberg atoms, can be explored
either through spectroscopy of the microwave-dressed states
as in Ref. [364] or by studying the microwave-driven population
dynamics within the set of Rydberg levels (after first populating
a particular Rydberg level by laser excitation) as in Refs.
[360,363,365–367].

One of the most attractive aspects of the Rydberg synthetic
dimensions platform is the existence of strong and stable

dipole-dipole interactions that enable the exploration of many-
body phenomena. These experiments also benefit from the rap-
idly expanding capabilities related to the preparation, control,
and detection in atom array experiments. At present, however,
one of the practical difficulties associated with Rydberg syn-
thetic dimensions is the inability to perform high-fidelity simul-
taneous detection of many Rydberg levels in an atom-resolved
fashion. High-fidelity and atom-resolved detection of individual
Rydberg levels has been achieved through standard approaches
in tweezer arrays[363,366,367] and, complementing this, fully state-
resolved detection via sequential field-induced ionization has
been achieved for single atoms[360,364,365]. But the combination
of these capabilities for full and high-fidelity state readout is
still outstanding.

4.1.3 Momentum lattice

In the previous two examples, the synthetic dimensions occur in
an internal degree of freedom that is almost entirely distinct
from (and in addition to) the real-space dynamics, given the
huge energy separation between the internal and external de-
grees of freedom. Those approaches can thus be used to explore
higher-dimensional physics by combining real-space and syn-
thetic lattices. A bit different from those approaches, one can
also consider using momentum states or generic motional states
of atoms as a discrete degree of freedom to form an effective
tight-binding model. In this case (similar to the works in pho-
tonics[37]), the synthetic dimension replaces a real dimension, but
one still benefits from the ability to induce the connectivity be-
tween states in the synthetic dimension through laser-driven
transitions (so as to engineer complex hopping terms, e.g.).
One approach to engineering synthetic dimensions based on la-
ser-coupled momentum states of neutral atoms was considered
by Gadway et al., where the presence of the quadratic free-par-
ticle dispersion of massive atoms leads to a unique transition
frequency for two-photon Bragg transitions (and Raman-
Bragg transitions) between states in the synthetic dimension[368].
To note, the idea to utilize discrete momentum states of atoms
as a landscape for exploring tight-binding transport phenomena
was highly influenced by the body of research on kicked
rotor experiments with cold atoms[369–375] and the use of the
quadratic dispersion to enable the control of complex hopping
was highly influenced by contemporary work on Raman-
or modulation-assisted hopping in biased real-space optical
lattices[376–378].

Roughly speaking, the momentum state (or space) lattice
(MSL) technique can simply be thought of as connecting a
set of discrete plane-wave momentum states of ultracold atoms
(as derived from a Bose-Einstein condensate) through a set of
coherent two-photon Bragg transitions[379,380]. Because the
atomic waves have mass and the free-particle dispersion is quad-
ratic, the energy difference between adjacent pairs (or nearest
neighbors) of momentum states is unique, reflecting the
Doppler shift of the Bragg transition. Unlike in kicked rotor ex-
periments, which apply short (in time) but strong lattice pulses
to atoms, one can operate at weak Bragg coupling and utilize
this momentum-dependence of the Bragg transition frequency
to achieve a unique control over all of the site-to-site connec-
tivity terms. This is similar to the case of Rydberg and molecule
synthetic dimensions, which were heavily inspired by the mo-
mentum lattice technique.

We now review the formalism behind the MSL technique.
We consider a pair of counter-propagating laser beams applied
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to atomic waves having mass M, where the left-traveling field
contains a set of discrete frequency components and the right-
traveling field contains a single frequency component [see
Fig. 17(f)]. For a system of two-level atoms with ground state
jgi and excited state jei [see Fig. 17(g)], the interaction process
between light and atoms gives the following Hamiltonian after
considering the dipole approximation[368]:

H � p2

2M
� ℏωejeihej � ℏωgjgihgj − d · E; (78)

where d � −jejr is the dipole operator with r being the distance
vector, p is the free-particle momentum, ℏωg�ℏωe� is the ground
(excited) state energy, and E is the electric field of the driving
lasers. The right-traveling field and the left-traveling field have
the expressions as[368]

E��x; t� � E� cos�k� · x − ω�t� ϕ��; (79)

E−�x; t� �
X
j

Ej cos�kj · x − ωjt� ϕj�; (80)

where x is the (1D) position, ω� and ωj are the frequencies, k�
and kj are the wave vectors of the lasers, ϕ� and ϕj are the
phases of the driving lasers, and E� and Ej correspond to
the amplitudes of the respective components. The detuning be-
tween atomic resonance (ωeg � ωe − ωg) and laser frequencies
is Δ ≡ ωeg − ω� ≃ ωeg − ωj. The resonant Rabi couplings be-
tween ground and excited states are Ω� � −hejd · E�jgi∕ℏ and
Ωj � −hejd · Ejjgi∕ℏ. The Hamiltonian can then be re-written
as[368]

H � p2

2M
� ℏωejeihej � ℏωgjgihgj

� ℏ

�
Ω� cos�kx − ω�t� ϕ��

�
X
j

Ωj cos�−kx − ωjt� ϕj�
�
�jeihgj � jgihej�: (81)

By assuming that the single-photon detuning Δ far exceeds all
the single-photon Rabi coupling terms (Ω� and Ωj), tracing out
the excited state, and making a rotating wave approximation, the
Hamiltonian in Eq. (81) becomes[368]

Heff �
X
n

4n2Erjnihnj

� ℏ
4Δ

X
n

Ω�Ωne−i�ω�−ωn�tei�ϕ�−ϕn�jn� 1ihnj

� ℏ
4Δ

X
n

Ω�Ωnei�ω�−ωn�te−i�ϕ�−ϕn�jnihn� 1j; (82)

where n is an integer to characterize the momenta pn � 2nℏkx̂
and Er � ℏ2k2∕2M is the recoil energy. The introduced states
jni relate to the motional, plane-wave-like states of ground state
atoms that have momentum pn. The Hamiltonian can be further
transformed into the interaction picture as[368]

HI
eff �

X
n

ℏΩ̃n

2
e
i�2n�1�4Er

ℏ te−i�ω�−ωn�tei�ϕ�−ϕn�jn�1ihnj

�
X
n

ℏΩ̃n

2
e−i�2n�1�4Er

ℏ tei�ω�−ωn�te−i�ϕ�−ϕn�jnihn�1j; (83)

where Ω̃n � ΩnΩ�
2Δ is the two-photon Rabi coupling. By setting

ωn � ω� − �2n� 1�4Er∕ℏ and neglecting non-resonant com-
ponents, the Hamiltonian can be simplified to[368]

HI
eff �

X
n

�
ℏΩ̃n

2
ei�ϕ�−ϕn�jn�ihnj�ℏΩ̃n

2
e−i�ϕ�−ϕn�jnihn�1j

�
:

(84)

Finally, by denoting the hopping amplitude as tn � ℏΩ̃n
2

and the
hopping phase as φn � �ϕ� − ϕn�, the resulting Hamiltonian in
the synthetic momentum lattice reads as[368]

HI
eff �

X
n

�tneiφn jn� 1ihnj � h:c:�: (85)

We can see that in Eq. (85), the coupling strength and the phase
can be individually adjusted (and the ignored detuning terms
can be used to engineer arbitrary site-energy landscapes[381]),
which provides high tunability in simulating various models
for different aims.

The above formalism discusses the scenario of a nearest-
neighbor-coupled one-dimensional MSL with one internal state.
The single-particle control can be and has been expanded in
many ways, including with multiple internal states (with two-
state non-Abelian lattices also considered in Ref. [368] and real-
ized in Ref. [382]), longer-range hopping[383], or multiple-driving
wavelengths[384] leading to the engineering of gauge fields, dis-
sipative loss[385–387], and higher-dimensional lattices[388,389].
Perhaps most importantly, however, atomic s-wave collisions be-
tween identical bosons naturally give rise to a nonlinear interac-
tion[390] that is effectively local in momentum space and that is
analogous to the Kerr nonlinearity of photonics[391,392]. This inter-
action term in the MSL allows for the study of nonlinear
phenomena in the synthetic dimension. Experiments with bulk
gases are just now pushing to the regime of strongly correlated
dynamics[393], and this exciting direction has also been accessed
in recent years by combining the MSL concept with high-
cooperativity optical cavity experiments[394,395].

4.2 Physical Phenomena

4.2.1 Intrinsic atomic states

We first discuss some novel physical phenomena explored based
on intrinsic, stable atomic states (treating Rydberg states as a
separate consideration). Since the first realizations of atomic
quantum gases, the internal state space has been considered as
a relevant resource for quantum dynamics studies and many-
body physics[396], even considered through the lens of analog to
real-space transport phenomena[397]. While there have been stud-
ies relevant to synthetic dimension phenomena arising purely in
the internal state space of ultracold atoms[33], we will mostly re-
strict our discussion to studies that combine real-space and in-
ternal-space control, with the atomic internal state providing an
extra, synthetic dimension.
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The first concrete proposal for using the internal states of
cold atoms to embed an extra “synthetic” dimension was the
work by Boada et al.[398], in the context of higher-dimensional
Hubbard models. Because of the massive separation of fre-
quency scales between external motional states (Hz to kHz)
and internal states (MHz to GHz), one can effectively decouple
the two and consider the dynamics in the internal state space as
being separate from that in real space. Later works would dis-
cuss extensions to this based on potential realizations of the
four-dimensional quantum Hall effect[399]. While each of these
proposed models required some rather intricate requirements
on the spatial arrangement of internal state transitions or the
form of internal state-dependent interactions, these works and
others[230] helped to stimulate the use of internal states as a re-
source for engineering Hamiltonians, relevant to topological
phases.

The 2014 work by Celi et al.[83] constituted a major practical
breakthrough, in effect reinterpreting the phenomena of spin-
orbit coupling in cold atomic gases[400] (in an underlying real-
space lattice) in terms of the effective dynamics in a hybrid
real-internal space and showing that this approach allowed
for the generation of Harper-Hofstadter models (describing
charged electrons moving in a perpendicular magnetic field)
with large effective magnetic fields. This proposal helped to pro-
vide an intuitive picture of how such models are implemented in
hybrid real-synthetic lattices, with the effective gauge field re-
sulting directly from the spatial variation of the relative phase of
the lasers driving state-changing Raman transitions. This pio-
neering work also made clear the power of the approach, from
the ability to observe dynamics with “single-site” resolution in

the internal space by spin-selective (Stern-Gerlach) imaging to
the robustness of the implementation with respect to technical
heating. This theoretical proposal was followed soon thereafter
by two experimental studies that realized large effective mag-
netic fields in few-leg ladder systems, Refs. [23,24], both
observing hybrid “real-synthetic”-space skipping orbits associ-
ated with the appearance of quantum Hall edge states, as de-
picted in Fig. 18(a). The generality of this approach was
further emphasized by the theoretical proposal by Wall et al.[345],
where single-photon transitions to long-lived laser-excited inter-
nal states could also be utilized to achieve effective magnetic
fields in two-leg ladder-like systems. Experimental realizations
similarly followed soon thereafter based on optical clock tran-
sitions in alkaline earth[347,348] and alkaline earth-like atoms [346],
where the ability to drive one-photon transitions provided addi-
tional tunability of the effective artificial gauge field[346].

Continued advances in the control and engineering of inter-
nal state synthetic dimensions continued for several years, with
improved measurement techniques[401] and the realization of sys-
tems with periodic boundary conditions[402–405]. A significant ad-
vance came with the realization of internal state synthetic
dimensions (spin-orbit coupling) in highly magnetic atoms pos-
sessing many internal states, where the exploration of Chalopin
et al.[342] with dysprosium atoms (possessing 17 low-energy in-
ternal states) allowed for the clear visualization of both bulk cy-
clotron orbits and chiral edge state dynamics, as depicted in
Fig. 18(b) (cf. also Refs. [406,407]). Such studies have been
extended in several directions, with periodic boundary condi-
tions[408] and the effective realization of small four-dimensional
lattices[52].

Fig. 18 Synthetic dimensions with low-lying atomic internal states. (a) In few-leg Hofstadter lat-
tices based on Raman-coupled hyperfine states, researchers have observed the skipping orbits
associated with topological boundary states. Adapted from Ref. [24] (cf. also Ref. [23]). (b) In
larger-spin magnetic atoms such as dysprosium, one can similarly explore both bulk and boundary
dynamics in spin-orbit-coupled gases. Adapted fromRef. [342]. (c) Control of atomic interactions in
few-state systems has recently enabled the exploration of many-body effects, namely, the obser-
vation of universal Hall response in two-leg flux ladders. Adapted from Ref. [410]. (d) The moiré
pattern and rich phase diagram resulting from a synthetic twisted bilayer structure. Adapted from
Ref. [48].
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Considering the many advances in the engineering of effec-
tive magnetic fields based on atomic internal states, combined
with the decades-long exploration of many-body phenomena in
ultracold gases[409], it is natural to ask if one could use these sys-
tems to directly explore analogs of correlated matter (bosonic or
fermionic) in large effective magnetic fields associated with the
fractional quantum Hall effect. In this context, it is important to
consider how interactions appear along the synthetic dimension,
and how those compare to the local-in-space interactions one
would associate with (screened) Coulomb interactions in,
e.g., electronic matter. For species like rubidium-87 and the al-
kaline earth (and alkaline earth-like) atoms, the interactions are
either SU�N� symmetric or nearly so, such that the interactions
appear as being very long-ranged (infinitely so) in the synthetic
dimension. In the case of magnetic atoms such as dysprosium
and erbium, the dependence of two-body interactions on the po-
sitions of particles in the internal space is expected to be highly
random[343] and often inelastic. All told, these experimental
details have complicated the pathway from realizing single-
particle dynamics in large effective magnetic fields to the reali-
zation of correlated states of atoms in large effective magnetic
fields. However, there has been recent success when restricting
to a synthetic two-leg ladder of two internal states, where the
universal Hall response of strongly interacting fermions in large
magnetic fields [as depicted in Fig. 18(c)] has been explored[410].
With continued advances, the synthetic dimension based on in-
trinsic atomic internal states holds great promise for the quan-
tum simulation of interacting fermionic matter in large effective
magnetic fields.

While our discussion has largely focused on advances in the
experimental realization and exploration of atomic synthetic di-
mensions, we should also stress that there have been significant
theoretical studies on the kinds of phenomena that may be ex-
plored in atomic synthetic dimensions, including Haldane
phases in synthetic ladders[411], orbital magnetism of frustrated
Creutz ladder systems[412], synthetic Hall ribbons with an uncon-
ventional squished baryon fluids phase[413,414], and Laughlin-like
states associated with chiral currents in ladder-like systems[415].
A number of theoretical studies have sought to capture the po-
tential influence of unconventional interactions along the syn-
thetic dimensions on the possible many-body phases, with
Bilitewski et al. considering the competition between den-
sity-density interaction and density-dependent tunneling[416],
Barbarino et al. considering the enhancement of chiral currents
due to repulsive atom-atom interactions[417] and the emergence
of fractional helical liquids from repulsive contact interac-
tions[418], Anisimovas et al. considering the interplay of frus-
tration and nonlocal atom-atom interactions[419], and Yan et al.
demonstrating the presence of Majorana zero mode states and a
topological superfluid under the influence of attractive Hubbard
interactions[420]. Building on the early study of Boada et al.[230],
researchers have also explored several possibilities for engineer-
ing novel geometries and topologies based on synthetic dimen-
sions[421–423]. Finally, there have been several theoretical studies
exploring how interactions can be combined with the control
over periodic boundary conditions to study fractional charge
pumping and fractional quantum Hall behavior in synthetic di-
mension experiments[424,425].

In describing the above studies in the context of synthetic
dimensions, many of which are related to the engineering of
effective magnetic fields for neutral atoms, we should not over-
look the more general body of works that explore the spin-orbit

coupling of atomic systems based on two-photon Raman tran-
sitions. Indeed, a good number of the above-discussed works
can equivalently be described in the context of spin-orbit cou-
pling[426–436]. While potential distinctions could be made based
on whether the synthetic dimension size is more than just
two states or whether the approach involves an effective mag-
netic field giving rise to topological edge states, this distinction
is a bit arbitrary, with some theoretical works more explicitly
melding the approaches of synthetic dimensions and spin-orbit
coupling[437]. One recent study by Zhang et al., which utilized
two internal states to represent two layers of a twisted bilayer
structure [see Fig. 18(d)][48], is a beautiful example of how in-
ternal states can be used to introduce a synthetic dimension
without the need to invoke magnetic fields or topological ef-
fects. Similar to the scheme[438] utilized in Ref. [48], it has alter-
natively been proposed[439] that one may implement twistronics
without a physical twist by imprinting spatially dependent in-
terlayer hopping between two internal states of atoms in a syn-
thetic bilayer.

4.2.2 Rydberg atoms

We next summarize some of the recent progress made in the
framework of a Rydberg-level synthetic dimension. This plat-
form is just a few years old, building on the proposals for syn-
thetic dimensions in dipolar molecules[353], but has already made
some fast progress in demonstrating single-particle control and
the influence of interactions. In some respects, the earliest study
on synthetic dimensions with Rydberg atoms pre-dated the
aforementioned proposal[353], with a tight-binding lattice formed
in the high-angular-momentum states of individual Rydberg
atoms in Ref. [357] by application of a common resonant radio-
frequency tone. In 2022, Kanungo et al. were the first to imple-
ment a Rydberg synthetic dimension with spectroscopic control,
constructing a topological SSH tight-binding model by applying
a set of distinct microwave fields to couple together a set of
Rydberg levels in individual Sr Rydberg atoms. They further
used frequency-resolved laser-driving to probe the system’s
band structure, including the zero-energy topological edge states
and their robustness to disorder [see Fig. 19(a)][364]. Recently, the
study of Rydberg synthetic dimensions in Sr atoms has been
extended by Lu et al. to the study of real-time dynamics follow-
ing state initialization, with the bulk topology (winding number)
of the SSH lattice structure extracted through the real-
time quench dynamics of Rydberg state populations [see
Fig. 19(b)][360]. Through dynamics, Lu et al. have also directly
observed topologically protected edge states, striking long-
range tunneling between zero-energy modes, as well as the
destruction of topological protection under the introduction
of disorder breaking the chiral symmetry[440]. In a separate effort
using similar techniques, Trautmann et al. have recently utilized
time-dependent control of the microwave driving fields to ac-
complish Thouless pumping of individual Rydberg excitations
in the synthetic dimension[441].

The above studies in Refs. [357,360,364,440,441] were all
based on individual atoms from atomic beams and bulk gases
excited to Rydberg levels, allowing for high repetition rates as
well as the efficient detection of many Rydberg states through
sequential field ionization. However, these studies on single
atoms did not allow for the exploration of how strong di-
pole-dipole interactions between particles (Rydberg atoms or
molecules) can dramatically influence the dynamics in the syn-
thetic dimension, as explored in Ref. [353]. The first study
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combining Rydberg synthetic dimensions and strong dipolar
interactions was that of Chen and Huang et al. based on
one-dimensional arrays of individual potassium atoms trapped
in optical tweezers and excited to Rydberg states[363]. At the level
of single-atom control, they introduced a tunable artificial gauge
field (over a single plaquette) to the Rydberg synthetic dimen-
sion by introducing a closed path in the internal state space [see
Fig. 19(c), left]. They further explored how the dipolar inter-
actions between atoms in the array influenced the Rydberg state
population dynamics, controlling the spacing between the atoms
to tune the strength of the dipole-dipole interactions. In the limit
of large dipolar interactions, the interactions between atoms led
to a suppression of uncorrelated transport [see Fig. 19(c), right],
with the population becoming trapped in the initially prepared
Rydberg level. Additional explorations of larger one-dimen-
sional synthetic lattices by Chen et al. explored Stark localiza-
tion and its breakdown due to dipolar interactions, as well as
Floquet-activated hopping of atom pairs in the synthetic dimen-
sions[366]. Recently, Chen et al. have engineered kinetically

frustrated band structures—specifically a diamond lattice with
flux—in the Rydberg synthetic dimension[367], studying how
strong dipolar interactions could lead to band mixing and delo-
calization due to the breakdown of Aharonov-Bohm caging, as
shown in Fig. 19(d).

Looking forward, beyond the results referenced above and
other forthcoming works, the platform of Rydberg synthetic di-
mensions can be extended in several straightforward directions.
First, such multi-level controls can be introduced into larger op-
tical tweezer arrays, which have been created with several thou-
sands of atoms[442]. Second, these early demonstrations can
easily be extended to larger and more elaborate internal lattices
involving many dozens of Rydberg levels. Third, the global mi-
crowave control can be combined with local optical addressing
to expand the control over initial state preparation, Hamiltonian
engineering, and state readout. Some possible science targets for
these systems have been explored since the earliest proposal
for dipolar synthetic dimensions, with some rather exotic quan-
tum string and membrane phases expected to arise even for

Fig. 19 Synthetic dimensions in Rydberg atoms. (a) The excitation spectra and the state decom-
position weights in an SSH lattice formed by microwave-coupled Rydberg levels. Adapted from
Ref. [364]. (b) The topological winding number extracted from the dynamics of Rydberg-level pop-
ulations in an SSH lattice. Adapted from Ref. [360]. (c) The influence of strong dipolar interactions
leading to inhibited dynamics of Rydberg electrons in a synthetic flux plaquette. Adapted from
Ref. [363]. (d) The observation of Aharonov-Bohm (AB) caging and its breakdown due to strong
dipolar interactions in a twisted diamond lattice. Adapted from Ref. [367].
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simply a uniform tight-binding model along the synthetic di-
mension[353,354,443,444]. Even more unusual properties have been
predicted to emerge in small synthetic lattices of just three or
four Rydberg states, which may naturally give rise to quasipar-
ticles with exotic exchange statistics as predicted by Wang
and Hazzard[445]. These works point to the possibility of a variety
of rich phenomena to be explored in Rydberg’s synthetic
dimensions.

4.2.3 Momentum lattice

The original proposal for momentum space/state lattices
(MSLs)[368] emphasized that the experimental ingredients re-
quired for their engineering had been present in many cold atom
experiments dating back to (and even before) the creation of
Bose-Einstein condensates. One simply had to drive the atoms
with a pair of lasers and operate with weak Bragg coupling, such
that local control over the hopping elements (Bragg transitions)

along the synthetic “momentum lattice” could be independently
controlled through their unique resonance conditions (Doppler-
shifted Bragg resonances). Thus, the first implementations of
momentum lattices were followed soon thereafter by Meier
et al.[381], demonstrating control of hopping amplitudes,
complex hopping phases, and effective potential landscapes.

Restricting to only nearest-neighbor tunneling terms in one-
dimensional MSLs, follow-up efforts by Meier et al.[446] and An
et al.[447] would respectively demonstrate the detection of
topological edge states in the SSH model and the engineering
of near-arbitrary disorders (diagonal, off-diagonal, time-
dependent). By combining the chiral symmetric structure of the
SSH model with the tunable off-diagonal disorder, Meier et al.
would soon also demonstrate the phenomenon of disorder-
induced topology associated with the topological Anderson
insulator phase[32], depicted in Fig. 20(a). Additional studies oc-
curring in simple nearest-neighbor-coupled one-dimensional

Fig. 20 Synthetic lattices based on laser-coupled atomic momentum states. (a) The realization of
disorder-induced topology in momentum lattices. Adapted from Ref. [32]. (b) The observation of
time reflection and refraction based on engineering a temporal boundary in momentum lattices.
Adapted from Ref. [451]. (c) The transition between flat-band localization and Anderson localiza-
tion in a synthetic momentum-state Tasaki lattice. Adapted from Ref. [453]. (d) The observation of
chiral dynamics in a synthetic momentum lattice with non-Abelian gauge fields. Adapted from
Ref. [382]. (e) The observation of nonlinear self-trapping when the mean-field interaction shift
U exceeds the tunneling bandwidth 4J . Adapted from Ref. [392]. (f) The observation of flux-
dependent nonlinear self-trapping in a momentum-state flux ladder. Adapted from Ref. [456].
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models included explorations of helical Floquet channels[448],
studies of critical localization phenomena[449], studies of fine-
tuned, self-dual quasiperiodic potentials[450], and the first exper-
imental realizations of time reflection and refraction by Dong
et al.[451], depicted in Fig. 20(b).

The ability to directly control the complex phase of all hop-
ping elements was one of the original motivations to explore
MSLs[368], but this capability is of little consequence in near-
est-neighbor 1D models. The first realization of artificial gauge
fields, or effective magnetic fields, in MSLs was by An et al.,
based upon driving two independent sets of Bragg transitions to
create an effectively two-dimensional MSL[384], albeit with only
two sites in one dimension. In a separate study, An et al. created
a two-leg zig-zag ladder system in a one-dimensional MSL
with only one set of Bragg lasers by combining nearest-
neighbor and next-nearest-neighbor hopping[383]. In both of
these studies[383,384], the two-leg ladder systems could be inter-
preted in terms of one-dimensional lattices with sublattice struc-
ture within a unit cell, with the flux-dependent dynamics being
recast in the language of spin-orbit coupling and flux-dependent
control of the band dispersion, leading to flux-dependent locali-
zation transitions and other effects[383]. A much more extreme
version of this flux-dependent control of band dispersions
was accomplished by Li et al. with the realization of a diamond
lattice with control of the flux penetrating each diamond pla-
quette[452]. Starting with a frustrated diamond lattice under the
all-flat-bands condition of Aharonov-Bohm caging, Li et al.
showed that the addition of disorder would actually induce
transport via the phenomenon of inverse Anderson localization,
with a transition to Anderson localization under very larger dis-
order[452]. Later studies by Zeng et al.[453] and Mao et al.[454]

would demonstrate and explore in detail the same phenomena
in the analogous Tasaki (or sawtooth) lattice, depicted in
Fig. 20(c).

The possibility of introducing non-Hermitian loss in MSLs
was first proposed and explored by Lapp et al., through either
effective loss by weakly coupling to a reservoir of states or by
weakly coupling to an auxiliary internal state that can experi-
ence scattering-induced loss from the relevant set of momentum
levels[385]. These techniques would be demonstrated in a set of
pioneering experiments that followed, with demonstrations of
non-reciprocal transport by Gou et al.[386], quantum Zeno effects
and parity-time symmetry breaking by Chen et al.[455], and the
first observation of the non-Hermitian skin effect in an atomic
system by Liang et al.[387].

In addition to non-Hermitian effects, which may be thought
of through the lens of complex hopping phases and complex
gauge fields, MSLs also offered the possibility of exploring
other exotic gauge field Hamiltonians. As discussed in
Ref. [368], the combination of state-preserving Bragg transi-
tions and state-changing Raman Bragg transitions could enable
the engineering of tight-binding models with non-Abelian
hopping elements and gauge fields. A significant advance in
MSL experiments came with the development of the Raman
MSL and the exploration of chiral dynamics driven by non-
Abelian gauge fields by Liang et al.[382], depicted in Fig. 20(d).
In principle, the presence of many internal states of atoms opens
the future possibility to explore highly complex non-Abelian
gauge fields well beyond SU(2).

In the studies described above, even with the added complex-
ity of non-Hermitian loss terms and non-Abelian gauge fields,
the phenomena that could be explored were somewhat limited

by the fact that the full control over MSLs was limited to
one-dimensional situations (or quasi one-dimensional geom-
etries) where one could independently control all tunneling
terms. Recently, Agrawal et al. proposed a generic path to im-
plementing highly controllable MSLs in higher dimensions by
giving up complete control over all tunneling terms and instead
settling for a large amount of control that repeats with some pat-
tern in momentum space[388]. A recent study by Dong et al.[389]

has demonstrated that rich phenomena can even be explored in
fully separable two-dimensional MSLs, and have paved the
way for future studies of MSL dynamics in two and three
dimensions.

Finally, we discuss the role of atomic interactions, which ul-
timately lie at the heart of utilizing atomic systems for quantum
simulations, as opposed to simply achieving experimental dem-
onstrations of phenomena that have been predicted and explored
in theory. The fact that atomic interactions should be relevant to
momentum space dynamics should have been clear based on
early pioneering experiments with ultracold atomic gases[390,457].
An et al. first pointed out in detail how the mode-dependence of
interactions in momentum space, stemming from the exchange
interactions of bosonic atoms colliding in distinct momentum
states, would give rise to an effectively local nonlinearity that
was highly analogous to the Kerr nonlinearity in many photon-
ics systems[391]. The influence of these momentum-space nonli-
nearities was explored in a number of experiments[458], with the
hysteresis-like response of Landau-Zener transitions by An
et al.[391], the interaction-induced localization in momentum-
space quantum walks by Xie et al.[459], the observation of non-
exponential tunneling related to swallowtails by Guan et al.[460],
the exploration of macroscopic nonlinear self-trapping and sol-
iton-like features in MSL arrays by An et al.[392], and the influ-
ence of interactions on the mobility edges in quasiperiodic
models by An et al[450]. Significant breakthroughs were made
with the realization of MSLs in an atomic species with control-
lable interactions, with the Feshbach control of interactions in
cesium allowing for the observation of interaction-induced
mobility edges by Wang et al.[461] as well as the observation of
flux-dependent self-trapping in zig-zag ladders by Li et al[456].
The future exploration of MSLs with strong interactions and
quantum correlations could be achieved in several ways, either
through the use of optical cavities to effect large effective non-
linearities as proposed and explored in Refs. [395,462], through
additional spatial confinement along transverse directions, or by
simply looking for collective effects beyond mean-field in
existing experiments, as explored recently by Williams et al[393].

4.3 Brief Summary

We have presented three of the main ideas associated with the
engineering of synthetic dimensions in cold atomic systems
based on low-energy internal states (e.g., hyperfine states),
Rydberg levels, and atomic momentum states. We have further-
more reviewed the state of the art of these approaches and
presented some considerations related to the exploration of
many-body quantum phenomena. However, given a large num-
ber of degrees of freedom in atomic and atom-like systems and
the many interpretations of the term “synthetic dimensions”, our
discussion has been highly selective and ignores many
important related developments. For example, in discussing
synthetic dimensions based on atomic motional states, we fo-
cused solely on the case of laser-coupled linear momentum
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states of otherwise freely propagating matter waves. One could
reasonably pursue the same basic approach in annular atomic
fluids to couple discrete angular momentum states[463]. Such
an approach would avoid the spatial separation of the coupled
modes (a limiting factor in the MSL experiments), but would
be restricted to much lower operating energies due to the con-
comitant large length scales. Alternatively, discrete motional
states of trapped atoms could be utilized, analogous to work
in photonics[37]. This approach follows the pioneering proposal
by Price et al. on the engineering of synthetic dimensions, arti-
ficial gauge fields, and the quantum Hall effect based on har-
monic oscillator states[464]. Experiments along this direction
have been performed in different regimes, both with bulk bo-
sonic gases exploring Bloch oscillations in a synthetic dimen-
sion[465] and with the engineering of chiral ladders of lattice-
trapped fermions[466]. Extensions to this approach have been pro-
posed for the exploration of quantized Hall conductance in two-
terminal experiments[467]. The use of discrete motional trap states
has also come of recent interest in trapped ion experiments,
allowing for the engineering of synthetic dimensions and an ar-
tificial magnetic field[468]. While trapped ions have been rela-
tively under-explored in the synthetic dimensions context,
they could be of interest either for the natural coupling between
discrete motional states in many-ion arrays[469] or by considering
the tunability of spin-spin interactions[470] in systems with more
than two internal states[471], possibly with the incorporation of
transverse and longitudinal field terms analogous to the de-
scribed work on Rydberg synthetic dimensions.

In thinking about many-body spin systems with internal state
synthetic dimensions, we ignored the original motivating plat-
form or polar molecule arrays[353,354], which are analogous to the
dipolar Rydberg system but also possess additional internal
states (nuclear states) and are fundamentally longer-lived.
While the challenges of working with molecules and the issue
of state-dependent polarizabilities had initially challenged work
on molecule synthetic dimensions, there has been much recent
progress[472,473], and this platform appears set to take off. Finally,
we highlight some additional platforms and techniques that
could be brought into the fold of synthetic dimensions. For
instance, the use of multiple internal levels in artificial
atoms[394,395,474] could be used to enrich quantum simulations
in solid-state experiments. Additionally, powerful tools such
as cavity quantum electrodynamics could be brought to bear
on synthetic dimension experiments, to transform the role of
(or to increase the range and strength of) interactions in the
many discussed platforms, as in Refs. [394,395]. The areas
of studies in synthetic dimensions with atomic systems are still
vividly growing and we expect to see more interesting results in
the near future.

5 Other Systems for Constructing
Synthetic Dimensions Using Discrete
Physical States

The concept of synthetic dimensions is developing rapidly in
many subjects and areas, some of which may not be initially
considered as the synthetic dimension but later are found to
fit within this framework. This section will discuss some ideas
that have not been included in any previous sections, to con-
struct synthetic dimensions using discrete physical states either
in the quantum regime (such as Fock-state lattice in Sec. 5.1 and

superradiance lattice in Sec. 5.2) or with classical fields (using
electronic circuits in Sec. 5.3 and others in Sec. 5.4)

5.1 Fock-State Lattice

Fock states refer to photon number states[475–478], and the transi-
tion rate of putting one more photon into a Fock state increases
with its existing occupation number as c†jni � ������������

n� 1
p jn� 1i.

The Hilbert space of Fock states can serve as a new synthetic
dimension to form Fock-state lattices[479], revealing the topology
of the quantized light. Meanwhile, the dimension of the Fock-
state lattice is determined by the number of the cavity modes,
which shows a unique advantage to study high-dimensional
physics based on this framework. Cai et al. utilized Fock-state
lattices to reveal various topological effects including the edge
state in a 1D SSH model, the valley Hall effect in a 2D honey-
comb structure, and the chiral edge states on the incircle in a 2D
Haldane model [see Fig. 21(a)][480]. Wang et al. theoretically ex-
plored the mesoscopic superposition states in the Fock-state lat-
tice configured in a system composed of three cavities and a
two-level atom, where the helical currents were used as an ef-
ficient scheme to generate NOON quantum states[481]. Yuan et al.
based on a strained honeycomb lattice to elucidate the unifica-
tion of valley and anomalous Hall effects, where the spin pre-
cession of valley Hall current is around an in-plane magnetic
field while the spin precession of chiral edge current is around
a magnetic field that is perpendicular to the synthetic lattice
plane [see Fig. 21(b)][482]. Deng et al. experimentally realized
the construction of the Fock-state lattice in a superconducting
circuit, where they displayed a set of topological physics includ-
ing topological zero-energy states of the SSH model, pseudo-
Landau levels, Haldane chiral edge currents, and the valley
Hall effect of 2D Fock-state lattices [see Fig. 21(c)][46]. Other
than the honeycomb structure, Wang et al. theoretically con-
structed a two-leg ladder based on the Fock state (of phonon
occupation) of a single trapped ion, where they demonstrated
the topological chiral motion of wave packets on the synthetic
lattice[468]. The robustness of coherent states using a mapping to
an SSH edge state has also been shown, thus showing a connec-
tion between quantum optics and topological physics using
the Fock-state lattice[483]. In terms of many-body physics, Yao
et al. experimentally observed the many-body localization by
introducing disorder into the synthetic Fock space[484]. A
classical analog of the Fock-state lattice can be implemented
using waveguides to mimic Fock states[485], where Keil
et al. theoretically and experimentally revealed the intriguing
quantum correlations of the Glauber-Fock photonic lattice[486].
Yang et al. precisely controlled the coupling strength between
photonic lattice sites to mimic the Fock-state lattice, where the
all-band-flat phenomena were observed in the experiment[487].
Yuan et al. proposed a nonadiabatic topological transfer
protocol using the gap-protected edge state of 1D Fock-state lat-
tices[488], which has been experimentally demonstrated in pho-
tonic[489] and nanomechanic lattices[490]. Cai et al. theoretically
extended the pseudo-Landau levels to a three-dimensional dia-
mond model based on 3D Fock-state lattices[491].

We also note that the rich dynamics of excitations in Rydberg
Ising simulators, namely, the long-lived oscillations associated
with quantum scarring and PXP model dynamics[492–494], can be
considered through the lens of a quantum walk in the higher-
dimensional state-space (or Fock space), with interactions
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giving rise to structure of the free energy landscape so as to con-
strain the dynamics.

5.2 Superradiance Lattice

Coupling the momenta of timed Dicke states[495] can form super-
radiance lattices in the momentum space[496]. There have been
many developments on the superradiance lattice platform,
which is in many ways a versatile, room-temperature comple-
ment to the ultracold synthetic momentum state lattice platform.
A number of lattice structures have been configured in the
superradiance lattice to explore the novel phenomena associated
with the Aharonov-Bohm phase. Wang et al. implemented a
sawtooth superradiance lattice in the BEC, and the chiral edge
currents were experimentally observed by designing the relative
spatial phase between the two standing-wave fields to induce an
artificial magnetic field[497]. He et al. constructed a Creutz super-
radiance lattice in room-temperature cesium atoms, where the
interplay between flat-band localization and the Aharonov-
Bohm phases were experimentally investigated through
independently tuning magnitudes and phases of the hopping co-
efficients [see Fig. 22(a)][498]. Besides, they also experimentally
synthesized a zigzag lattice to manifest the chiral edge currents
in the superradiance lattice, which was observed for the first
time in an ensemble of atoms at room temperature[499]. Wang
et al. unveiled the topological phase transition by inserting
modulation phases of the coupling fields in a honeycomb super-
radiance lattice of timed Dicked states [see Fig. 22(b)] [500]. Mao
et al. realized the extraction of the topological invariant of the
1D room-temperature superradiance lattices based on the
spectroscopic method, which shows possible implication in
the optical devices with topological physics[501]. Wang et al.
implemented a velocity scanning tomography technique to dis-
tinguish the response of atoms with different velocities, so that it

enables the quantum simulation of 2D Chern insulators in am-
bient conditions[502].

Other degrees of freedom of light can be incorporated to ex-
pand the dimension and design even richer physical effects. Xu
et al. applied the Floquet engineering on the superradiance lat-
tice and extended the 1D superradiance lattice to a 2D synthetic
lattice with an extra frequency dimension [see Fig. 22(c)]. The
dynamic localization, delocalization, as well as the Floquet chi-
ral currents were experimentally observed by implementing the
Doppler shifts and the Floquet modulation to engineer effective
force with arbitrary direction, and utilizing the phase delay be-
tween two driving fields to induce artificial magnetic fluxes[503].
The characteristics of superradiant emission can also be ex-
plored in synthetic superradiance lattices of ultracold atoms.
Chen et al. experimentally constructed a 1D superradiance lat-
tice in BEC of 87Rb ultracold atoms, where the measured direc-
tional emission spectra show the dependence on the band
structure [504]. Mi et al. experimentally revealed the superradiant
emission with subnanosecond resolution, as well as the long-
lasting oscillation in the superradiant emission[505]. Li et al. theo-
retically analyzed the interplay between the synthetic magnetic
flux and many-body atomic interaction, obtaining exotic sliding
and chiral superfluid phases in superradiance lattices[506].

5.3 Electronic Circuit

With the recent development of the manufacturing technology
of the integrated circuit, the platform of electric circuits shows
the potential for fulfilling the exploration of inaccessible topo-
logical phases due to its flexibility and controllability[507,508]. The
dimension of the lattice in the electronic circuit is not strictly
defined by the geometric space but rather by the coupling pro-
vided by the electric components such as capacitors[509]. While
quite different from synthetic dimensions in its approach, analog

Fig. 21 (a) The valley Hall effect and the chiral edge states of the Fock-state lattice. Adapted from
Ref. [480]. (b) The valley and anomalous Hall effects in a strained honeycomb lattice. Adapted
from Ref. [482]. (c) The Haldane chiral edge currents and valley Hall effect in the Fock-state lattice.
Adapted from Ref. [46].
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experiments with electronic circuit lattices (and other platforms
such as mechanical lattices[510–516]) are motivated by similar goals
of engineering and exploring exotic Hamiltonians. We introduce
several achievements that have been made in this area.

Wang et al. used electric circuits to fabricate the 4D topologi-
cal insulator with the discrete elements and the interconnections
built by capacitors and inductors, where the 3D surface state of
the 4D topological insulator was experimentally demonstrated
with the use of the impedance measurements [see Fig. 23(a)][517].
The 3D topological feature associated with the Weyl physics
was also experimentally investigated by Lu et al., where
Berry curvature, Berry flux, as well as surface states, were
shown [see Fig. 23(b)][518]. Moreover, Luo et al. reported the
topological nodal line state and Weyl state in a 3D inductor-
capacitor (LC) circuit lattice[519]. Ningyuan et al. experimentally
demonstrated the topological band structure, site-resolved edge-
mode distribution, and the Möbius global topology in the 2D
Hofstadter model[520]. Hofmann et al. theoretically studied the
possibility of utilizing negative impedance converters with the
current inversion to access the so-called topolectrical Chern
circuit, where the chiral edge mode is manifested in simula-
tions[521]. The possibility of simulating a non-Abelian Aharonov-
Bohm effect in the linear circuit was further discussed by Albert
et al.[522]. The nontrivial edge state of the 2D SSH model
was also theoretically and experimentally demonstrated by
Liu et al. in the electric circuit[523].

Higher-order topological phenomena in the electric circuit
can also be studied in the platform of electronic circuits. For
example, topological corner states were observed in the experi-
ment conducted by Imhof et al. with the quadrupole insulators
[see Fig. 23(c)][524]. The high-order topological transitions of the
quadrupole insulators were experimentally observed by Serra-
Garcia et al. in an LC circuit[526]. In the electric circuit frame-
work, Ezawa et al. found a huge resonance peak in the breathing
kagome and pyrochlore lattices due to the corner states of the
topological phase[527]. The topological effect can have a

prominent influence on the harmonic generation process, where
Wang et al. used a nonlinear SSH circuit to display the enhanced
third-order harmonic generation [see Fig. 23(d)][525]. On the
other hand, nonlinear effects can also assist the topological tran-
sition. Hadad et al. constructed a 1D SSH lattice in the nonlinear
circuit arrays, and self-induced topological protection emerged
in the experiment[509]. The few-body interacting system can be
explored in the electric circuit, where Olekhno et al. uncovered
the topological edge states of interacting photon pairs in the ex-
periments[528]. The exploration of electronic circuits has further
been extended into the non-Hermicity realm. In particular, the
Floquet parity-time phase diagrams were uncovered in the
numerical analysis performed by Huerta-Morales et al. through
implementing gain and loss in a time-modulated chain of induc-
tively coupled RLC (where R stands for resistance, L for induct-
ance, and C for capacitance) electronic circuits[529]. Zheng et al.
studied the topological properties of a 5D non-Hermitian model
including Yang monospheres, Fermi cylinder surfaces, and the
5D skin effect[530]. Riechert et al. demonstrated that electrical
circuits could be useful for exploring lattice gauge theories in
their classical (large-field) limit[531]. Finally, the electronic circuit
shows its possibility of being utilized to construct hyperbolic
lattices to study the flat band[36] and the physics of negatively
curved spaces[532].

5.4 Other Synthetic Dimensions

Although we have seen many methods in constructing the syn-
thetic dimension using various discrete physical states, there are
also other approaches to building the artificial dimensionality
that may not be able to be easily categorized in any sections
above. Here we briefly introduce some relevant forefront re-
search. In an early pioneering proposal to construct the synthetic
dimension, Jukic et al. proposed to combine evanescent cou-
pling and waveguide coupling between resonators in a 3D pho-
tonic crystal to construct the 4D photonic lattice with three

Fig. 22 (a) The averaged reflectivity and the normalized probability versus ϕ by selectively prob-
ing the flat or chiral band. Adapted from Ref. [498]. (b) The phase transition in the honeycomb
superradiance lattice. Adapted from Ref. [500]. (c) The dynamic localization and delocalization
in the Floquet superradiance lattice. Adapted from Ref. [503].
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spatial dimensions and one synthetic dimension[533]. In their
work, the additional dimension is built using the spatial degree
of freedom in a super unit cell, i.e., several resonators in each
unit cell, and applying additional couplings to introduce the
connectivity for the fourth synthetic dimension. Baum et al. pro-
posed to form the Floquet synthetic dimension by implementing
Floquet driving, where they manifested the topological boun-
dary states in the 2D synthetic space[534]. The quantum states
of light and matter can also be connected via the interaction
to form a synthetic dimension. For example, Rahmani et al. pro-
posed to build a synthetic dimension composed of photon and
exciton modes by implementing the light-matter coupling,
where they demonstrated the transition between a flat band
and dispersive band in a synthetic Stub lattice[535].

The concept of synthetic dimensions has also been developed
in optomechanical systems, where the coupling between vibra-
tional modes and optical modes is utilized in constructing the
additional dimensionality. Therein, the optomechanical modula-
tion phase can be used to create the effective magnetic field for
photons in the synthetic dimension[536]. Poshakinskiy et al. fur-
ther designed the exciton-mediated light-sound interaction in an
optomechanical system, which forms a synthetic dimension
with three legs composed of Stokes and anti-Stokes photons[537].

Multiple bosons may also be utilized to create the synthetic
dimension. For example, Wu et al. theoretically explored the 4D
quantum Hall effect in a 1D quasicrystal using two bosons[538]

and Cheng et al. theoretically studied the multiboson dynamics
on a 1D lattice that can be mapped to a single boson on an
N-dimensional lattice[539]. Gräfa et al. theoretically and experi-
mentally manifested the evolution of correlated biphotons in
nonlinear arrays of evanescently coupled waveguides, which
can be mapped to a model related to the single photon in a
2D lattice[540].

In addition, Naumis et al. showed that an incommensurable
system can map to a higher-dimensional space, where they

demonstrated that the incommensurable 1D cavity can be
described by the Hamiltonian of a 2D triangular lattice[541].
Maczewsky et al. formulated a universal approach to fabricate
higher dimensions by deliberately designing the local inhomo-
geneous coupling in the 1D lattices, where the dynamics in a 7D
hypercubic lattice were experimentally displayed in a mapped
1D laser-written photonic lattice[542]. Following the similar map-
ping method, Edge et al. mapped the 4D Hamiltonian onto a 1D
dynamical system, where the 4D phase diagram of the quantum
Hall effect was demonstrated[543], building on earlier work re-
lated to embedding extra dimensions in quasiperiodically driven
kicked rotors[370–374,544]. With the development in the field of
synthetic dimensions, we envision ourselves to see more ap-
proaches arising for constructing synthetic dimensions in the
near future.

6 Parameter Synthetic Dimension
We reviewed various ideas for constructing synthetic dimen-
sions using different degrees of freedom of photons and atoms
to connect discrete modes for lattice models in the previous sec-
tions. There is also another idea for synthetic dimensions using
the system parameters. Such an idea has a fundamental differ-
ence from previously discussed discrete lattice models where
the connectivity is the key to building the synthetic dimension.
Here, the synthetic dimension is formed by leveraging the de-
grees of freedom inherent in parameters that emulate a dimen-
sion with the continuous variable in a Hamiltonian[8,11,12,14]. The
dependency of the system on the parameter can thus be articu-
lated within a synthetic space, wherein the parameter axis func-
tions as an additional synthetic dimension supplementing the
conventional physical space. Usually, the static parameter can
be viewed as an additional quantum momentum, which allows
for an extended Brillouin zone with an additional dimension. In
this way, higher-dimensional phenomena manifest via the

Fig. 23 (a) The 3D surface states for the circuit implementation of a 4D topological insulator.
Adapted from Ref. [517]. (b) The surface states of the 3D Weyl circuit. Adapted from Ref.
[518]. (c) The corner states of the quadrupole insulators. Adapted from Ref. [524]. (d) The en-
hanced third-order harmonic generation in the nonlinear SSH lattice. Adapted from Ref. [525].
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parameter dependency of a lower-dimensional system. This
method is usually termed “parametric synthetic dimensions”
or “parameter spaces”, and is connected to the well-studied
and complementary ideas of “dimensional reduction” and “di-
mensional extension”.

Compared to other approaches forming the synthetic dimen-
sion (as discussed in previous sections), the complexity in con-
structing parameter spaces does not scale up with the
dimensionality of the systems. Even simple two-level or few-
level systems can effectively be used to explore band structures
or phenomena associated with two-, three-, and higher-
dimensional systems by parametric embedding[33,545–549]. To be
mentioned, if the parameter is constant or varied adiabatically,
it lacks a kinetic term, which implies that no transport happens
in this parametric synthetic dimension. However, the parametric
synthetic dimension is still a powerful tool for demonstrating
high-dimensional topological phenomena, as it can provide
the projection of the systematic evolution under a certain quan-
tum momentum (at a certain parameter) or when the quantum
momentum is adiabatically varying (i.e., the parameter is
slowly tuned).

In what follows, we first present typical theoretical models to
illustrate the basic idea of parameter space in Sec. 6.1. Then in
Sec. 6.2, we discuss several representative physical phenomena
including topological pumps, synthetic Weyl degeneracies and
high-dimensional topology, and parameter spaces in non-
Hermitian systems. Section 6.3 lists some useful applications
of parameter synthetic dimensions in designing photonic devi-
ces, followed by a brief introduction to constructing parameter
spaces in other systems in Sec. 6.4.

6.1 Theoretical Model

6.1.1 Representative model for parameter synthetic dimension

The basic idea of a parameter synthetic dimension is to treat the
system parameters as non-spatial dimensions. As a simple illus-
tration, let us consider a Hamiltonian H�kα; kp� describing an
extended “Brillouin zone” in the momentum space. Here kα
is an n-dimensional Bloch lattice momentum (α � x; y; z for
3D systems) and kp represents m-dimensional parameter syn-
thetic dimensions. In general, the extended Brillouin zone
has n�m dimensions. Therefore, the eigenstates of H�kα; kp�
can exhibit topological phenomena beyond n spatial dimen-
sions. The Hamiltonian satisfies the Schrödinger equation

H�k̃�jψ�k̃�i � E�k̃�jψ�k̃�i; (86)

where k̃ is the extended Brillouin zone, based on which the
topological invariants can be obtained. For example, the
Chern number in a synthetic 2D system (one spatial dimension
kx and one synthetic space dimension kp) writes

C �
I
L̃
hψ�k̃�j∇k̃jψ�k̃�idk̃; (87)

where L̃is a loop on the extended Brillouin zone of k̃ � �kα; kp�.
The integral kernel here gives the gauge potential in synthetic
space (i.e., Berry connection in the momentum space):

A�k̃� � ihψ�k̃�j∇k̃jψ�k̃�i: (88)

The crucial idea here is that the topology frequently applied to
band structures in momentum space can indeed be employed for

any parameter dependence. Furthermore, if one adjusts the
parameter as a function of time in an adiabatic manner, the dy-
namics of such a time-variant system display characteristics of
higher-dimensional topological physics projected onto the low-
dimensional real space. A typical model is known as the AAH
model—an elegant example of the parameter space, with the
following Hamiltonian[550]:

H�n� �
X
n

λc†ncn cos�2πbn� ϕ� � �tc†ncn�1 � h:c:�; (89)

where cn�c†n� is the annihilation (creation) operator of site n in
the x direction, and λ; t, ϕ, and b are parameters determining the
on-site potential and coupling strength. Here, the parameter ϕ
can be viewed as a synthetic momentum (i.e., ϕ ≡ km), so that
the Hamiltonian H�kn; km� represents a 2D square lattice (n, m)
with synthetic magnetic flux b:

H�n;m� �
X
n;m

�λei2πbnc†n;mcn;m�1 � tc†n;mcn�1;m � h:c:�:

(90)

Therefore, one can see that although the system is a 1D chain,
this fictitious 2D lattice has the extended Brillouin zone in the
coordinates �kn; km� and has a non-zero Chern due to the mag-
netic flux b. In this way, the topological properties of 2D sys-
tems can be probed in a 1D spatial structure.

6.1.2 Parameter space for synthetic Weyl points

Another representative exploration of high-dimensional physics
using parameter space involves the synthetic Weyl points. Weyl
points, characterized by linear intersections of two bands at dis-
tinct locations in 3D momentum or synthetic space, can be lik-
ened to monopoles possessing quantized monopole charge[551].
Within this context, they function as either sources or sinks for
the Berry curvature. The polarity of the monopole charge is dic-
tated by the chirality inherent to each Weyl point. Using the two
degenerate modes at the Weyl points as the basis, the general
effective Hamiltonian near each Weyl point can be expressed
as[552]

Heff � Nxkxσx � Nykyσy � Nzkzσz � TxkxI; (91)

where σx;y;z are the Pauli matrices, I is a 2 × 2 identity matrix,
Nx;y;z are the Fermi velocities, and Tx is the tilted velocity of the
Weyl point along the x direction. The tilting of the Weyl
dispersion cone is determined by the Weyl parameter αWeyl �
Tx∕Nx, with αWeyl < 1 corresponding to a type-I Weyl
system, and αWeyl > 1 corresponding to a type-II Weyl system.

As a representative example, here we illustrate how to con-
struct a 3D synthetic space holding Weyl points using system
structural parameters in 1D optical waveguide arrays[553].
Considering a 1D binary waveguide array, in the tight-binding
approximation, the system Hamiltonian is written as

H � β1�l�
X
j

a†1;ja1;j � β2�l�
X
j

a†2;ja2;j

� κ1�m�
X
j

�a†1;ja2;j � a†2;ja1;j�

� κ2�m�
X
j

�a†1;j�1a2;j � a†2;ja1;j�1�; (92)
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where β1�2��l� and κ1�2��m� represent the propagation constant
and coupling coefficients of the waveguides; l and m are two
independent numbers within �−1; 1�. They are introduced
through w1�w1c�1�f1l�,w2�w2c�1−f2l�, d1 � dc�1�m�,
d2 � dc�1 −m�, where w1 and w2 are the widths of two wave-
guides in a unit cell, d1 and d2 are the gaps of waveguides, and
fi � �w1c � w2c�∕2wic. The lattice constant is Λ � 2dc�
w1c � w2c. l and m construct a 3D synthetic space when incor-
porating the Bloch wave vector k along the transverse direction
x. We define three dimensionless coefficients δl � l − lc,
δm � m −mc, and δk � �k − kc�∕k0, where k0 � π∕Λ and
�lc; mc; kc� � �0; 0; π∕Λ� is the position of any possible degen-
erate point. Upon Fourier transformation of Eq. (92), we
have

H �
�
β1�δl� κ1�δm� � κ2�δm�e−ikΛ
κ1�δm� � κ2�δm�eikΛ β2�δl�

�
:

(93)

Expanding β1�δl� and κ1�2��δm� with respect to δl and δm,�
β1�δl� � β1c � b1δl�O�δl2�;
β2�δl� � β2c − b2δl�O�δl2�; (94)

and�
κ1�δm� � κc � cδm�O�δm2�;
κ2�δm� � κc − cδm�O�δm2�; (95)

where

bi �
∂βi
∂δl

				
δl�0

� wicfi

�
∂βi
∂wi

				
wi�wic

�

� �w1c � w2c�∕2
�
∂βi
∂wi

				
wi�wic

�
;

i � 1; 2;

(96)

and

c � ∂κ
∂δm

				
δm�0

� dc

�
∂κ
∂d

				
d�dc

�
: (97)

Substituting Eqs. (94) and (95) into Eq. (93) and expanding H
with respect to (δl, δm, δk) up to the first order, we finally have

H � 2cδmσx � K0δkσy � b�δl�σz � αWeylσ0� � β−σz
� β�σ0; (98)

where σ � �σx; σy; σz� is the Pauli matrix, σ0 is a 2 × 2 identity
matrix. K0 � −κck0Λ, b� � �b1 � b2�∕2, and β� �
�β1 � β2�∕2. Here the parameter

αWeyl �
b−
b�

� �b1 − b2�
�b1 � b2�

(99)

determines the types of the Weyl point, i.e., αWeyl < 1�> 1� cor-
responding to a type-I (-II) Weyl system. Based on this model,
the synthetic Weyl point, including types I and II, have been

successfully observed in 1D photonic waveguides, in both
Hermitian and non-Hermitian systems (will become a Weyl ex-
ceptional ring). More complex topological degeneracies can
also be realized in various systems following the similar prin-
ciple, such as 5D Yang monopoles, high-dimensional excep-
tional contours in non-Hermitian systems, etc., as will be
shown in Sec. 6.2 later.

6.2 Physical Phenomena

6.2.1 Adiabatic evolution and topological pumps

As has been demonstrated, the 1DAAH lattice model represents
a 2D synthetic lattice by treating the parameters as the system
momenta (see theoretical model in Sec. 6.1). The synthetic di-
mension can be explored by considering the dynamics of a time-
dependent parametric system[554], i.e., the configuration of the
system is modified cyclically in time by varying the parameter
ϕ. In this way, scanning ϕ is equivalent to scanning the 2D ex-
tended Brillouin zone with a 1D line. In a finite system, the
scanning process results in variations of the eigenfrequencies.
These changes are directly related to the dispersion of the
one-way edge state within the quantum Hall system. If we as-
sume that at time t � 0, the system is in an edge state at one end,
then by gradually changing ϕ as a function of time, the mode
will evolve based on the edge state dispersion. This evolution
will lead to the mode becoming a bulk state, and eventually re-
appearing as an edge state localized at the opposite end. This
process, termed a topological pump, reviews the topological in-
sights of adiabatic mode evolutions, in which the adiabatic
pumping process in a time-varying 1D system offers a straight-
forward method for investigating the characteristics of the asso-
ciated 2D system, achieved by transforming a 1D lattice into a
segment of a 2D model.

Photonic waveguides provide an excellent platform for ex-
ploring topological pumping effects, where the propagation di-
rection (e.g., z) of light serves as the time dimension in a
Schrödinger equation. By adiabatically varying ϕ along z,
Kraus et al. experimentally observed the topological adiabatic
pumping in waveguide lattices using the AAH model [see
Figs. 24(a) and 24(b)][555]. When light is injected into the edge
state at one side of the system, it evolves into bulk modes propa-
gating along the z-axis. Eventually, it reappears as an edge state
on the opposite end, which aligns with the predictions of the
AAH model. Note that such an AAH model, in the real spatial
dimension, can form a quasi-crystal, i.e., nonperiodic structures
with long-range order. This implies that the arrangement of a
quasi-crystal can be understood as stemming from periodic
structures in a dimension that surpasses the physical one. In this
vein, topological phase transitions in photonic quasicrystals and
topological pumps in a Fibonacci quasicrystal have also been
demonstrated[556,557].

Extending this idea to a 2D physical lattice, 4D quantum
Hall physics can also be studied—making possible the probing
of topological physics beyond the realistic 3D physics
spaces. In Ref. [31], the topological pump is realized in a 2D
“off-diagonal” AAH model, H � P

x;ytx�ϕx�c†x;ycx�1;y�
ty�ϕy�c†x;ycx;y�1 � h:c:, where ti�ϕi� � ti � λi cos�2πbii� ϕi�;
with i � x; y representing the modulated hopping amplitudes in
the i direction. The pump parameters ϕx and ϕy correspond to
the synthetic momenta and bi is the synthetic magnetic field.
Therefore, the Hamiltonian maps to four dimensions—two real
(kx; ky) and two synthetic (ϕx; ϕy). The bandgaps of the 2D

Yu et al.: Comprehensive review on developments of synthetic dimensions

Photonics Insights R06-41 2025 • Vol. 4(2)



pump with nontrivial second Chern numbers can be character-
ized as manifesting a quantized bulk response with 4D sym-
metry [see Fig. 24(c)]. This achievement further suggests the
potential for studying 6D topological phases, which has not
been experimentally verified yet[558,559].

The realm of topological pumps continues to expand beyond
serving as a tool for probing high-dimensional physics; it pro-
vides insights into adiabatic mode evolutions that can be further
enriched by incorporating elements such as nonlinearity, nonpar-
axiality, and non-Abelian operations. In nonlinear optical sys-
tems, integer and fractional topological quantized transports of
solitons have been demonstrated by considering Kerr-type non-
linearity, which quantizes transport via soliton formation[42,560]

[see Fig. 24(d)]. Beyond the paraxial condition commonly
adopted in most quantum-classical analogies, Refs. [561,562]
indicate that breaking the paraxial assumption leads to an asym-
metric topological pumping effect, arising from the destruction
of chiral symmetry due to the emergence of long-range inter-
actions [see Fig. 24(e)]. Unlike traditional Thouless pumps,
which describe the adiabatic evolution of a physical system fol-
lowing a non-degenerate band, the non-Abelian pumps occur
when degenerate bands are present. Such non-Abelian Thouless
pump was theoretically proposed in a photonic Lieb lattice[563],
and successfully realized in photonic[564,565] [see Fig. 24(f)]
and acoustic[566] waveguides. The topological pump transforms
the identical initial state into distinct final pumped states by

switching the sequence of pumping operations—a signature
of non-Abelian effects.

The pump process discussed above is restricted to the adia-
batic condition, which inevitably increases the system’s evolu-
tion duration and reduces the compactness of the system.
Recently, Song et al. addressed the limitation of slow adiabatic
evolution in topological pumps by leveraging the concept of a
quantum metric in quantum geometry (i.e., the real part of a
quantum geometry tensor that has been less explored compared
to its imaginary counterpart, the Berry curvature)[567]. They dis-
covered that the quantum metric tensor could serve as an impor-
tant criterion to measure the adiabaticity of a topological pump
process. Through experiments in bilayer silicon waveguides,
they showed that judicious modification of the quantum metric
could improve the evolution speed and even reach the adiabatic
infimum of topological pumps[568].

6.2.2 Synthetic Weyl points and higher-dimensional nontrivial
topology

In the preceding part, we discussed how the higher-dimensional
physics of a system characterized by a parametric Hamiltonian
is unveiled when the parameters are permitted to fluctuate as a
function of time within a singular physical framework. In fact,
the exploration of higher-dimensional physics can also be
undertaken by examining the properties of a set of physical
structures with varying parameters. In this way, the synthetic

Fig. 24 (a) Schematics of topological adiabatic pumping in waveguide lattices. (b) Mode evolu-
tions as the function of the pumping parameter ϕ. The inset pictures illustrate the mode profile
during the evolution process. (a), (b) Adapted from Ref. [555]. (c) Band diagram of a topological
pumping in the 2D lattice manifesting the 4D integer quantum Hall effect. Adapted from Ref. [31].
(d) Nonlinear Thouless pumps with quantized soliton transport. Adapted from Ref. [42].
(e) Asymmetric topological pumps with nonparaxial conditions. Adapted from Ref. [561]. (f) Non-
Abelian Thouless pumps. Adapted from Ref. [564].
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dimensions are explored statically, i.e., one point at a time, usu-
ally achieved by manual reconfiguration of the system. In this
vein, viewing a static parameter as the synthetic momentum has
been applied to experimentally observe Fermi arcs and Weyl
points in three dimensions, second Chern crystals in four dimen-
sions, and even Yong monopoles in five dimensions. Here
we review the progress of parameter synthetic dimensions in
a variety of optical systems ranging from photonic crystal
and waveguide arrays to metamaterials, specifically focusing
on how to construct the parameter synthetic dimension in differ-
ent systems.

Aspects of 3D Weyl-point physics can be explored using a
simple 1D photonic crystal structure. In 2017, Wang et al.[569]

considered a 1D photonic crystal, the unit cell of which consists
of four layers with thicknesses of �1� p�da, �1� q�db,
�1 − p�da, and �1 − q�db, where p and q are the specially in-
troduced structural parameters that form a two-parameter space
[see Fig. 25(a)]. When incorporated with k (1D momentum
space), it forms a 3D space containing the Weyl points. The
manifestation of the physical signature for such a Weyl point
is observed in the reflection phase when a wave, at the frequency
of the Weyl point, is incident from air onto the photonic crystal
along the direction of normal incidence. More specifically, by
adjusting the parameters p and q, the reflection phase wraps

around the point where both p and q equal zero, i.e., around
the synthetic Weyl point. In this spirit, a charge-2 Dirac point
in a 1D optical superlattice system is also observed, with two
parameters controlling the on-site potential and coupling coef-
ficient forming two synthetic dimensions[570] [see Fig. 25(b)].
Recently, controllable photonic Weyl nodal line semimetals
were also demonstrated in simple 1D photonic structures, where
multiple phase transitions, e.g., from type-I to type-II Weyl
points, were realized by flexibly modulating the structural
parameters[571].

Compared to theWeyl point demonstrated in a real 3D spatial
dimension, synthetic Weyl points realized in parameter syn-
thetic dimensions are much easier to access and open new pos-
sibilities for studying unconventional physics associated with
the Weyl point, which would be quite difficult for a real
Weyl lattice. For example, the Weyl interface, the domain wall
formed by two independent Weyl media, suggests novel physi-
cal effects across the interface. It is predicted that Fermi arcs
would hybridize and alter their connectivity at the interface be-
tween two Weyl semimetals. However, the construction of the
Weyl interface remains quite challenging due to the difficulty in
lattice matching and specific crystal orientation in higher dimen-
sions. Recently, it has been theoretically proposed to construct
the interface of synthetic Weyl semimetals and observe the

Fig. 25 (a) Optical Weyl points in a 1D photonic crystals with two structural parameters as addi-
tional dimensions. Adapted from Ref. [569]. (b) Charge-2 Dirac points in a 1D optical superlattice
with two structural parameters forming two synthetic dimensions. Adapted from Ref. [570].
(c) Fermi arc reconstruction in a 1D dielectric trilayer grating with the relative displacements be-
tween adjacent layers as two synthetic momenta. Adapted from Ref. [572]. (d) Type-II Weyl points
and interface states in a 1D optical SWG waveguide lattice, where two structural parameters con-
trolling the coupling and on-site energy serve as parameter dimensions. Adapted from Ref. [553].
(e) One-way fiber in a 3DWeyl photonic crystal using the angle of helical modulation to construct a
4D synthetic space. Adapted from Ref. [575]. (f) 4D second Chern crystal realized in 2D photonic
crystals with two extra synthetic translation dimensions. Adapted from Ref. [576]. (g) 5D Yang
monopoles in 3D metamaterials, which includes two bi-anisotropy material parameters as
synthetic dimensions. Adapted from Ref. [43].
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Fermi arc reconstruction in a 1D dielectric trilayer grating,
where the relative displacements between adjacent layers
play the role of two synthetic momenta[572] [see Fig. 25(c)].
Moreover, experimental demonstrations have been conducted
on arbitrary interfaces between two Weyl structures with orien-
tations that can be freely rotated within the synthetic parameter
space utilizing 1D optical waveguide arrays[573]. Besides the mo-
mentum space k provided by the waveguide array, two structural
parameters (waveguide widths and gaps) can be utilized to form
two parameter spaces if engineered properly. Gapless topologi-
cal interface states of the two Weyl structures have been ob-
served. Note that due to the intrinsic limitation of waveguide
systems, only type-I Weyl point can be realized in this system.
Furthermore, in Ref. [553], a nanostructured subwavelength
grating (SWG) waveguide is employed [see Fig. 25(d)], which
allows flexible control of the waveguide dispersion and gives
rise to continuous controllability for building not only a
type-I but also a type-II Weyl point with conical-like Fermi sur-
faces and tilted dispersions (see theoretical model in Sec. 6.1).
As such, a type-II Weyl heterostructure can be constructed,
which supports topologically protected interface states. More
interestingly, the type-II Weyl point with tilted dispersion
can set new rules for the emergence of topological bound
states—which can disappear and become an extended mode
even with the topological phase transition. This bound-extended
mode transition can be controlled by tuning its rotational phases
in the parameter spaces. More interestingly, in addition to the
widely adopted structural parameters, the magnetic field
strength can also be treated as a parameter synthetic dimension,
thus enabling full tunability to the Weyl point and the corre-
sponding photonic Fermi arcs[574].

In principle, including more dimensions, whether spatial or
non-spatial synthetic, enables the demonstration of physical ef-
fects in arbitrarily high-dimensional space, even beyond the real
3D dimensions. Lu et al.[575] considered the angle of helical
modulation to the 3D Weyl photonic crystal fibers to construct
a 4D synthetic space [see Fig. 25(e)]. They annihilated Weyl
points by helical modulation of the photonic crystals, thus
obtaining a 3D topological bandgap that separates forward
and reverse-propagating photonic channels. Spiral modulation
pulls out a topological line defect in space, which can be used
as the core layer of a unidirectional transmission fiber. Unlike
traditional optical fibers, the optical signal in one direction can
bypass arbitrarily shaped impurities or defects without scatter-
ing. Different from the topological principle of the unidirec-
tional edge state of a 2D topological photonic crystal (the
invariant is the first number of the 2D space), the topological
invariant of the one-way fiber is the second number of the
4D parametric space. Such a second Chern crystal in a 4D
parameter space can also be realized in 2D photonic crystals
by introducing two extra synthetic translation dimensions[576]

[see Fig. 25(f)]. Recently, Ma et al. utilized electromagnetic
metamaterials as fundamental components to achieve a 5D
generalization of a topological Weyl semimetal[43,577] [see
Fig. 25(g)]. They included two bi-anisotropy material parame-
ters as synthetic dimensions in addition to the three real momen-
tum dimensions, and demonstrated both linked Weyl surfaces
and Yang monopoles. In summary, the exploration of higher-
dimensional systems, which are inaccessible through experi-
ments in three real-space dimensions, is made possible by
synthetic parameter spaces, offering an intriguing avenue for
studying exotic physics in high dimensions.

6.2.3 Non-Hermitian parameter synthetic dimension

The exploration of synthetic topological systems reveals a richer
realm of physics, especially when delving into nonconservative
systems that engage in energy exchange with their surroundings.
From a mathematical standpoint, these systems can be charac-
terized as non-Hermitian. A distinctive attribute of such systems
is the potential existence of specific conditions, termed excep-
tional points (EPs), where unconventional behavior is antici-
pated. These exceptional points are spectral singularities
within the system’s parameter space, marked by the concurrent
convergence of two or more eigenvalues and their associated
eigenvectors[153] [see Fig. 26(a)].

The realization of non-Hermitian photonic systems has at-
tained great success, largely due to the fact that the complex
potential can be easily controlled by gain and loss in an optical
system. The spontaneous PT breaking process in the parameter
space has been demonstrated in coupled waveguides[578–580] and
whispering gallery micro-ring resonators[301,581] [see Fig. 26(b)].
The intriguing features of EP can result in nontrivial light behav-
iors. For example, asymmetric light propagations were proposed
by operating the system precisely at the EP[582] or utilizing the
topological feature of EP by encircling it in the parameter
space[25,26,583] [see Fig. 26(c)]. Besides, sensing in the vicinity
of an EP is proposed[28,29], based on the fact that the energy split-
ting of two coalescing levels subjected to a parameter perturba-
tion is enhanced by the EP. The lasing system is naturally a
non-Hermitian case; therefore it is straightforward to explore
the lasing properties under the gain/loss arrangement[584,585],
which is utilized to generate single-mode lasing and suppress
other unwanted modes. The EP encircling process has also been
utilized to modify the laser profile, and a spatial evolving mode
that faithfully settles into a pair of bi-orthogonal states at the two
opposing facets of a laser cavity is realized[47].

The interaction between EPs and topology has become a fo-
cal point in recent research, as evidenced by extensive studies
across various systems[586,587]. These investigations offer valuable
insights for achieving novel symmetry-protected non-Hermitian
phases that are entirely absent in the Hermitian domain. For in-
stance, it has been demonstrated that a Dirac point can evolve
into continuous rings of EPs when non-Hermiticity is intro-
duced[22]. Furthermore, a new configuration involving isolated
pairs of EPs has been realized, leading to a unique double-
Riemann sheet topology. This configuration results in a bulk
Fermi arc that connects the two EPs[34]. In addition to these de-
velopments in 2D, a set of NH degeneracies known as Weyl
exceptional rings has been theoretically predicted[588], and
was later confirmed experimentally in a 3D Weyl photonic lat-
tice composed of helical waveguides etched into silica[589].

The Weyl exceptional ring demonstrated in 3D spatial space
with deliberate and complicated structures lacks tenability. The
realization of a synthetic Weyl exceptional ring opens doors to
new possibilities by treating the non-Hermitian parameters as
new synthetic dimensions[590] [see Fig. 26(d)]. Recently,
non-Hermitian Weyl interface physics was experimentally dem-
onstrated in complex synthetic parameter space within a loss-
controlled silicon waveguide array, which overcomes the diffi-
culty of realizing the non-Hermitian Weyl heterostructures in
3D spaces[591] [see Fig. 26(e)]. The researchers treated the non-
Hermitian parameter as the additional dimension to construct
non-Hermitian synthetic dimensions and explore the concept
of non-Hermitian order, which refers to the spatial arrangement
of non-Hermitian components, rather than the magnitude of
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non-Hermiticity (i.e., PT modulation), for advanced topological
light manipulations. New types of Weyl interfaces hidden in the
non-Hermitian dimension were revealed, explained by sign-
reversed imaginary mass (reversed non-Hermitian order) and
phase transition crossing the Weyl exceptional ring.

In general, the degeneracy points of Hermitian topological
bands transform to a non-Hermitian EP contour with the dimen-
sionality being d − 2 in spatial dimension d (because two con-
straints need to be satisfied to create an EP). For example, the
diabolic points can be changed to isolated points (zero-
dimensional, 0D)[34] and Weyl points can be changed to
Weyl exceptional rings (1D)[589], as has been demonstrated.
Therefore, the realization of exceptional surfaces (ESs) requires
more degrees of freedom and dimensions, posing a significant
challenge for the experimental demonstration. Recently, Zhang
et al. successfully constructed a 3D exceptional surface based
on parameter synthetic dimensions with magnon polaritons[592]

[see Fig. 26(f)]. Due to the flexibility in manipulating the struc-
ture in parameter spaces, they showed that the ES can be con-
veniently adjusted across multiple dimensions to form an
exceptional saddle point (ESP). This discovery of the ES will
pave the way for advanced control over non-Hermitian systems
in high dimensions. For instance, beyond ESs, it is possible to
create exceptional volumes or even more complex EP structures
by incorporating higher-order synthetic dimensions.

6.3 Applications

Besides offering a powerful method for exploring higher-
dimensional topological physics, the parameter synthetic

dimension is also empowered for useful photonic devices. In
Refs. [593,594], a topological rainbow concentrator that lever-
ages topological photonic states was proposed using the con-
cept of synthetic dimensions. This synthetic dimension is
achieved by utilizing the translational degree of freedom inher-
ent in the nanostructures within a 2D photonic crystal’s unit cell
[see Fig. 27(a)]. The translational deformation triggers a nontri-
vial topology in this synthetic dimension, leading to robust in-
terface states at varying frequencies. This topological rainbow
has the ability to confine states of differing frequencies, which
can be precisely controlled by adjusting the spatial modulation
of the interface state group velocities. Both the operational fre-
quency and bandwidth of the topological rainbow can be finely
tuned by manipulating the bandgap of the photonic crystal.
Further research has demonstrated a nanophotonic topological
rainbow working in the near-infrared regime on a silicon chip[595]

and a gigahertz surface acoustic wave topological rainbow in
nanoscale phononic crystals[596], paving the way for realizing
topological slow light, topological routers, and topological tem-
porary storage in integrated chips [see Fig. 27(b)]. To be men-
tioned, these prior researches have solely concentrated on the
interactions between a stationary photonic crystal and a trans-
lating photonic crystal. It is physically unfeasible to achieve
complete gap dynamic tuning using just one translation param-
eter. More recently, by incorporating two translation parameters,
Guan et al. illustrated the phase diagram within the 2D trans-
lation parameter space and examined the domain wall separating
two translating photonic crystals[597]. This enables the creation of
dynamically adjustable bandpass filters, a capability that cannot
be achieved with only one translation parameter, and will pave

Fig. 26 (a) Exceptional points formed in parameter spaces. Adapted from Ref. [153].
(b) Realization of EP in different photonic systems. Top panel: in coupled waveguides. Adapted
from Ref. [578]. Bottom panel: in micro resonators. Adapted from Ref. [301]. (c) Encircling the EP
with different directions gives rise to asymmetric mode switching. Adapted from Ref. [25].
(d) Parameter synthetic dimension realized in PT-symmetric photonic crystal systems.
Adapted fromRef. [590]. (e) Realization of Weyl exceptional ring and non-HermitianWeyl interface
modes in synthetic parameter waveguide lattices. Adapted from Ref. [591]. (f) Exceptional sur-
faces in parameter synthetic dimensions with magnon polaritons. Adapted from Ref. [592].
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the way for the development of tunable topological devices
based on parameter synthetic dimensions. Furthermore, studies
on topological metasurfaces have experimentally demonstrated
on-chip spin-valley conversion of the topological edge
states[598–600] and adiabatic topological photonic interfaces[601]

by leveraging the adiabatic evolution in structural parameter
space. More generally, under the framework of high-dimen-
sional parameter space and stereographic projection, the crea-
tion of a family of toroidal phase topologies within paraxial
laser beams was experimentally demonstrated[602].

On the other hand, topological pumps have potential appli-
cations in on-chip optical routing and light steering. For exam-
ple, Sun et al. demonstrated broadband and fabrication tolerant
power coupling and mode-order conversion using a Thouless
pumping mechanism[603] [see Fig. 27(c)]. They considered a fi-
nite Rice-Mele (RM) modeled silicon photonic waveguide array
and exploited an edge-to-edge pumping process to build the
topological photonic directional couplers and mode-order con-
verters. These topological devices exhibit an ultrabroad band-
width of 120 nm and are quite tolerant to significant structural
deviations (−50–150 nm) compared to their conventional
counterpart. However, these topological devices typically have
a large footprint, indicating a tradeoff between device size and
topological robustness. Recently, these challenges have been ad-
dressed with the guidance of a quantum metric[567], adiabatic in-
fimum[568], and shortcut to adiabaticity concepts[565]. These
advancements indicate viable pathways to achieve both robust-
ness and a compact footprint for topological devices, thereby
facilitating the development of practical topological integrated
devices on photonic chips. Beyond the classical optics, topo-
logical pumps also show capability in quantum information
processing. For example, Tambasco et al. harnessed the topo-
logical pumps to realize a high-visibility quantum interference
of single-photon states in an integrated photonic circuit[604] [see
Fig. 27(d)]. Their device implements the off-diagonal AAH

model in a time-varying fashion, and the resulting topological
pumping effects can be utilized to implement a 50:50 beam-
splitter. Using this “topological beamsplitter”, the Hong-Ou-
Mandel interference is measured with 93.1%� 2.8% visibility,
demonstrating the nonclassical behavior of topological states.
More recently, a topological lasing with a well-defined non-
Hermitian bulk topology in a 1D coupled ring resonator array
is demonstrated[605] [see Fig. 27(e)]. This 1D structure is equiv-
alent to a 2D non-Hermitian Chern insulator using the synthetic
dimension. All this progress in parameter synthetic dimensions
can certainly boost progress in on-chip information processing
and lasing, high-speed optical communications, and integrated
quantum photonics.

6.4 Other Systems for Parameter Synthetic Dimension

The concept of parameter synthetic dimensions expands largely,
demonstrating its effectiveness in various physics systems be-
yond optics, ranging from cold atoms and acoustics to elastic
and mechanics. Now, we briefly summarize the specialties in-
volved in different systems when forming parameter synthetic
dimensions.

The ultracold atoms in optical superlattices have become a
perfect platform for implementing quantized topological charge
pumps through synthetic dimensions of parameters[606–608]. For
example, the realization of a dynamical version of the 4D inte-
ger quantum Hall effect was achieved through the implementa-
tion of a 2D topological pump with ultracold bosonic atoms in a
2D angled optical superlattice[30] [see Fig. 28(a)]. The corre-
sponding 2D model is represented by a square superlattice,
which is composed of two 1D superlattices along the x and
y directions, each created by overlaying two lattices. This pump-
ing method is equivalent to threading the flux in the 4D model.
In this way, researchers successfully observe a bulk response

Fig. 27 (a) Forming synthetic dimension utilizing the translational degree of freedom of a 2D pho-
tonic crystal’s unit cell. Adapted from Ref. [593]. (b) A topological rainbow concentrator thus can be
realized and demonstrated in integrated nanophotonic chips. Adapted from Ref. [595]. (c) Robust
and broadband optical coupler using a topological pump. Adapted from Ref. [603]. (d) A topologi-
cal splitter for high-visibility quantum interference of single-photon states. Adapted from Ref. [604].
(e) A topological lasing in a 1D coupled ring resonator array that can be mapped to a 2D non-
Hermitian Chern insulator with synthetic dimension. Adapted from Ref. [605].
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with intrinsic 4D topology and demonstrate its quantization by
measuring the associated second Chern number.

In addition to the photonics and cold atoms, acoustic and
elastic waveguide lattices have also emerged as distinct and
fruitful grounds for constructing parameter synthetic dimen-
sions. For instance, emulating an on-site modulating Harper
model enables the intertwining of edge states within a finite
acoustic waveguide lattice, and the Landau-Zener transition in
a topological pumping process is demonstrated[609]. Moreover,
the off-diagonal terms—representing the hopping effect—can
be made positive or negative depending on their orientation,
which is advantageous for achieving higher Chern numbers
in a hopping-tuned Harper model[610]. Most importantly, by tai-
loring the parameters of the coupling tubes to conserve chiral
symmetry, the braiding of degenerate acoustic modes, a crucial
step toward realizing logic operations with sound, is demon-
strated[611]. Almost at the same time, a non-Abelian Thouless
process has also been successfully experimentally realized in
the acoustic waveguides[566] [see Fig. 28(b)]. Using the structural
parameters as extra system momenta, the 3D Weyl physics can
also be explored in acoustic systems[612–615] [see Fig. 28(c)].
Moreover, the massless vortex-string chiral modes have been
experimentally observed by applying an inhomogeneous pertur-
bation of Yang-monopole phononic metamaterials with two
structural parameters, which provides a platform for studying
cosmic topological phenomena and realizing topological
fibers[616].

For elastic waves, in addition to discrete lattice systems, con-
tinuous elastic waveguides with elaborately decorated mass den-
sity or stiffness have emerged as promising platforms for
realizing topologically protected wave evolution. For example,

a 2D elastic plate with spatial stiffness modulation in one direc-
tion mimics a coupling elastic waveguide array supporting edge
states in bandgaps with non-zero Chern numbers. When smooth
modulation is introduced along another direction with adiaba-
ticity satisfied, a robust edge-to-edge topological pumping pro-
cess has been proposed and experimentally demonstrated[617,618]

[see Fig. 28(d)]. Parameter synthetic dimensions have also been
implemented in mechanical systems[619] for pursuing stable ex-
ceptional chains in non-Hermitian systems. Additionally, the
electric circuits also can serve as an excellent platform for ex-
ploring exotic topological effects and offer a promising alterna-
tive to the synthetic dimensions approach for realizing higher-
dimensional lattices[517,620–622].

We briefly summarize this section in that the idea of param-
eter synthetic dimensions serves a similar purpose as that of
synthetic dimensions using discrete states to simulate higher-
dimensional physics in low-dimensional physical structures.
Although the strategies are distinct and there are different ad-
vantages in both ideas, the unique physical phenomena in
parameter synthetic dimensions also provide many potential ap-
plications. A combination of different ideas of synthetic dimen-
sions may provide a unique opportunity for simulating complex
physical problems and seeking novel wave manipulations.

7 Summary and Discussion
In this comprehensive review article, we discussed previous
works focusing on the concept of synthetic dimensions, expand-
ing the discussion from optical and photonic systems to atomic
and molecular systems. The key idea for creating a synthetic
dimension is to utilize various degrees of freedom of waves, ma-
terials, or systems to add additional dimensionality to spatial
ones. As we summarized in this article, the frequency, orbital
angular momentum, and polarization of light have been used
to construct discrete photonic lattices; the pulse arrival times
have been used to build time-multiplexed networks; and intrin-
sic atomic states or momenta have been used to form discrete
synthetic dimensions with atoms. Other important proposals
with classical waves in electronic circuits and acoustic platforms
as well as using photon numbers and superradiant states in
quantum optics are also briefly discussed. All of these ideas re-
quire a suitable design of the connectivity to induce the coupling
between discrete lattice sites such that the model can mimic a
tight-binding Hamiltonian in condensed matter physics. On the
other hand, the use of system parameters was also discussed,
where a continuously tunable parameter is usually taken to em-
ulate the momentum in the Bouillon zone reciprocal to a
Hamiltonian of a discrete lattice model. In both approaches
for building synthetic dimensions, one or more additional di-
mensions are added to the geometric dimensionality of a physi-
cal structure.

We note that two major categories are of fundamental differ-
ence for constructing synthetic dimensions. The first category,
through connecting discrete physical modes of light or atoms,
summarized from Sec. 2 to Sec. 5, can provide an obvious syn-
thetic lattice analog to the spatial lattice model, where dynamics
of the field or matter wave can be simulated. The second one,
via using system parameters, as summarized in Sec. 6, cannot
give an obvious lattice model but the choice of a system variable
standing for a specific momentum in a Hamiltonian is usually
easier to achieve in experiments. Although there are very differ-
ent platforms in photonics and atomic systems to achieve
parameter synthetic dimensions, the difference in physics is

Fig. 28 (a) Topological pump with ultracold bosonic atoms in a
2D angled optical superlattice. Adapted from Ref. [30]. (b) Non-
Abelian Thouless pumping with structural modulated acoustic
waveguides. Adapted from Ref. [566]. (c) Weyl points in a 1D
sonic crystal. Adapted from Ref. [612]. (d) Realizing topological
pumping in elastic waves. Adapted from Ref. [618].
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not large as all platforms share the common usage of the
system variable. On the other hand, the different approaches
in the first category, i.e., connecting discrete physical modes,
can have significant differences. However, there are several
general advantages and application outlooks for all synthetic
dimensions.

An immediate advantage brought forth by synthetic dimen-
sions is the potential for exploring high-dimensional physics in
lower-dimensional geometric structures. For example, as we
discussed in Sec. 6.2 and Sec. 6.4, one can study 4D topological
physics in a 3D photonic structure (the 2D waveguide array)[31]

or a 2D atomic array[30] once the system parameters are included
to form the parameter synthetic space. This advantage can also
be viewed from the opposite perspective, namely, to study 1D or
2D physics in a 0D physical structure. For example, we have
seen demonstrations of quantum Hall physics in a single-
ring resonator[38] and Weyl physics in 1D or 2D photonic crys-
tals[573,591]. The simplification of the spatial geometry may
provide important on-chip applications where the spatial foot-
print is limited and complicated spatial structuring is difficult to
construct[103–111,140,193] but the wave dynamics can still be ex-
panded to higher dimensions.

Another well-acknowledged advantage of synthetic dimen-
sions is the unprecedented flexibility in designing the connec-
tivity and the resulting model Hamiltonian. We have seen
several examples in previous sections to study models with ef-
fective gauge fields[23,24,38], non-Hermiticity[40,41], and long-range
couplings[80,82]. Different from their spatial counterparts, the
model built with synthetic dimensions can provide unique ingre-
dients to these models as such connectivity is often difficult to
directly realize by the spatial geometry.

As for common potential applications, probably the most im-
portant one for synthetic dimensions is towards quantum sim-
ulations of physics in high dimensions and complicated models,
yet in simple physical geometries that are possible to implement
with current technology. Although most current works still
focus on quantum simulations with linear Hamiltonians, the po-
tential to demonstrate Hamiltonians with particle-particle inter-
actions is rapidly growing. Recent developments with Rydberg
atom synthetic dimensions[16] and ultracold atoms[410] show
promise for the simulation of many-body physics with synthetic
dimensions. Quantum simulation for many-body physics with
synthetic dimensions in photonics is indeed challenging[166]

due to the weakness of direct photon-photon interactions, but
is still promising with recent experimental achievements[111,161].

Another important point for synthetic dimensions we want to
emphasize is the potential for technological applications in
manipulating quantum states or optical fields in unconventional
ways using ideals from fundamental physics. This point be-
comes particularly significant when developing on-chip pho-
tonic devices with tunability and reconfigurability, as light
propagation and conversion may be controlled by varying the
Hamiltonian in synthetic space[140]. Photonic calculations have
also been proposed using additional degrees of freedom of light
with synthetic dimensions[98,110,182–185]. Moreover, the quantum
operations such as manipulation of the state of photons, the gen-
eration of quantum entanglement, and quantum-gate operations
may also be manipulated in the synthetic space based on recent
theoretical proposals[164,241].

As the approaches in the first category mentioned above are
quite different, such as using different degrees of freedom of
light, the sequence of the pulse train, and atomic states, here

we would like to give more comparison of three representative
approaches, including the frequency of light in Sec. 2, pulse
arrival times in Sec. 3, and atomic states in Sec. 4 as examples,
to briefly discuss their unique advantages, disadvantages, and
application scenarios.

The frequency of light has been greatly used for optical com-
munications[623,624]. The construction of synthetic frequency di-
mensions in Sec. 2 is then easy to realize with optical
communication compatible setups in experiments, for example,
fiber rings, and the band structure in lattice models is naturally
obtained as the reciprocal of the frequency is time[94]. The ex-
ternal modulations on either phase and amplitude modulations
can provide flexible connectivity between discrete frequency
modes to introduce effective gauge potentials, non-Hermiticity,
and long-range connectivity[38,40,41,80,82,100]. Moreover, the suitabil-
ity of synthetic frequency dimensions in integrated photonics
has also been noticed in photonic chips, where fiber rings
are replaced by micro-ring resonators with integrated modula-
tors[103–111,140,193]. These advantages can lead to immediate
photonic applications including novel frequency comb genera-
tions[49,161,173] and functional photonic chips for photonic compu-
tations[110,181,182]. However, there is also an obvious limitation for
synthetic frequency dimensions. The translation symmetry
along the frequency axis of light usually prohibits arbitrary de-
sign on each connectivity between synthetic lattice sites, which
may bring difficulty in building slightly complicated lattice
models, such as the SSH lattice[99,151] where one has to generate
supermodes first to bring two different sites into one unit cell.
Yet, frequency still is a good candidate for synthetic dimensions
due to its broad generalization ability from optical wavelength
to microwave photonics[112] and magnons[625].

The use of pulse arrival times to construct the synthetic time
dimension shares some similarities with the synthetic frequency
dimension, for example, both utilize fiber loops. Nevertheless,
each pulse in fiber loops represents each synthetic site, so to
make sure each site is well recognized and there are enough sites
in a lattice model, the loop is usually relatively long[258].
Auxiliary paths have to be added to introduce any additional
connectivity. However, the unique advantage of such a platform
is that it can in principle design any individual connectivity be-
tween any two synthetic sites. Moreover, different from the fre-
quency axis of light, the boundary of the synthetic time
dimension can be easily defined due to the limited number of
pulses and externally controlled turn-on/off connectivity[244],
making the physical models very flexible. Therefore, many
pioneering physical concepts in topology, non-Hermiticity,
quantum walks, and many others[20,21,39,45,50,51,246,325] have been
demonstrated in experiments with synthetic time dimensions
(see Sec. 3 for details). Other than common applications that
we discussed above, perhaps another unique application with
synthetic time dimensions is to provide alternative computa-
tional paradigms, such as the Ising model solver[258].

Very different from photonics approaches, the synthetic di-
mensions with atomic states discussed in Sec. 4 rely usually on
laser experiments in atomic gases, which involves significant
complexity in the need for sophisticated equipment and effort
for initial setup in experiments. More equipment is required
and the cost of experiments can be high. However, the
price is worth it due to the unique advantage of synthetic dimen-
sions with atomic states, namely, the relatively easy access to
quantum simulations of many-body physics[363,391,410,456,459,460], es-
pecially with the rapid developments of the Rydberg-atom
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technology[442,626]. Therefore, this important point also makes the
synthetic dimensions with atomic states a compelling platform
for achieving topological quantum computing applica-
tions[627,628], potentially leading towards constructing the
fault-tolerant quantum computer with non-Abelian quantum
phases of matter[629,630]. At the very least, it appears promising
for fundamental explorations of topologically ordered phases.

With the discussed common advantages, together with
differences in various approaches, we summarize the outlook
on synthetic dimensions. We expect to see quantum simulations
in a space beyond three dimensions. The study of topological
physics can include elements that are difficult to achieve in real
space such as long-range couplings, non-Abelian gauge fields,
and non-reciprocal interactions. A combination of topological
physics and quantum simulations in synthetic dimensions can
also provide a novel way for realizing new quantum algorithms
and achieving topological quantum computations. On the pho-
tonics side, frequency comb generations from various topologi-
cal and non-Hermitian physical models can bring interesting
applications to optical communications and signal processing.
Moreover, the integrated photonics platform including lattice
models in synthetic dimensions also brings flexible and recon-
figurable functionality for photonics chip design. Other applica-
tions may also come up if one includes different synthetic
dimensions into a single system.

Nevertheless, there are still several challenges for the field of
synthetic dimensions if one wants to fully take all of the advan-
tages listed above. For photonics, the loss must be decreased to
ensure a long evolution time for a Hamiltonian. Disorders and
perturbations should be diminished so a precise model is built
that can be extended to high dimensions, although several
synthetic dimensions such as frequency are inherently less dis-
ordered than real-space photonic lattices. Proposals with table-
top photonic structures require further optimization or alterna-
tive approaches to be realized in on-chip footprints. Large pho-
ton-photon interactions, or all-optical nonlinearity are also
desired to explore many-body physics with synthetic dimen-
sions in photonics, and alternative approaches that incorporate
natural or artificial atoms within photonic synthetic dimensions
show promise in this regard. On the other hand, for atoms, there
remain platform-specific challenges to be overcome for the
exploration of novel many-body phases and phenomena in syn-
thetic dimensions. Advancing these atomic synthetic dimension
experiments may further help to advance general quantum sim-
ulation and computation techniques.

The field of synthetic dimensions continues to grow rapidly
with numerous significant contributions from the broader physi-
cal sciences community still emerging as this review is being
written. We hope this comprehensive review not only serves
the purpose of summarizing representative examples of recent
developments in synthetic dimensions but also elicits broad in-
terest from scientists from a wider variety of fields, catalyzing
new ideas that bridge synthetic dimensions with their areas
of study.
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